Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
For biomedical applications in targeted therapy delivery and interventions, a large swarm of micro-scale particles (“agents”) has to be moved through a maze-like environment (“vascular system”) to a target region (“tumor”). Due to limited on-board capabilities, these agents cannot move autonomously; instead, they are controlled by an external global force that acts uniformly on all particles. In this work, we demonstrate how to use a time-varying magnetic field to gather particles to a desired location. We use reinforcement learning to train networks to efficiently gather particles. Methods to overcome the simulation-to-reality gap are explained, and the trained networks are deployed on a set of mazes and goal locations. The hardware experiments demonstrate fast convergence, and robustness to both sensor and actuation noise. To encourage extensions and to serve as a benchmark for the reinforcement learning community, the code is available at Github.Free, publicly-accessible full text available October 23, 2023
-
Free, publicly-accessible full text available June 1, 2023
-
This paper presents four data-driven system models for a magnetically controlled swimmer. The models were derived directly from experimental data, and the accuracy of the models was experimentally demonstrated. Our previous study successfully implemented two non-model-based control algorithms for 3D path-following using PID and model reference adaptive controller (MRAC). This paper focuses on system identification using only experimental data and a model-based control strategy. Four system models were derived: (1) a physical estimation model, (2, 3) Sparse Identification of Nonlinear Dynamics (SINDY), linear system and nonlinear system, and (4) multilayer perceptron (MLP). All four system models were implemented as an estimator of a multi-step Kalman filter. The maximum required sensing interval was increased from 180 ms to 420 ms and the respective tracking error decreased from 9 mm to 4.6 mm. Finally, a Model Predictive Controller (MPC) implementing the linear SINDY model was tested for 3D path-following and shown to be computationally efficient and offers performances comparable to other control methods.Free, publicly-accessible full text available May 23, 2023
-
Free, publicly-accessible full text available April 1, 2023