skip to main content


Title: Closed-Loop Control of Magnetic Modular Cubes for 2D Self-Assembly
Reconfigurable modular robots can dynamically assemble/disassemble to accomplish the desired task better. Magnetic modular cubes are scalable modular subunits with embedded permanent magnets in a 3D-printed cubic body and can be wirelessly controlled by an external, uniform, timevarying magnetic field. This paper considers the problem of self-assembling these modules into desired 2D polyomino shapes using such magnetic fields. Although the applied magnetic field is the same for each magnetic modular cube, we use collisions with workspace boundaries to rearrange the cubes. We present a closed-loop control method for self-assembling the magnetic modular cubes into polyomino shapes, using computer vision-based feedback with re-planning. Experimental results demonstrate that the proposed closed-loop control improves the success rate of forming 2D user-specified polyominoes compared to an open-loop baseline. We also demonstrate the validity of the approach over changes in length scales, testing with both 10mm edge length cubes and 2.8mm edge length cubes.  more » « less
Award ID(s):
1932572 1553063 1849303 2313928 1659514 1849291 2313929 2050896 2130775 2130793
PAR ID:
10440445
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Ani Hsieh
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
ISSN:
2377-3774
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnetic modular cubes are cube-shaped bodies with embedded permanent magnets. The cubes are uniformly controlled by a global time-varying magnetic field.A 2D physics simulator is used to simulate global control and the resulting continuous movement of magnetic modular cube structures. We develop local plans, closed-loop control algorithms for planning the connection of two structures at desired faces. The global planner generates a building instruction graph for a target structure that we traverse in a depth-first-search approach by repeatedly applying local plans.We analyze how structure size and shape affect planning time. The planner solves 80% of the randomly created instances with up to 12 cubes in an average time of about 200 seconds. 
    more » « less
  2. This paper examines a family of designs for magnetic cubes and counts how many configurations are possible for each design as a function of the number of modules. Magnetic modular cubes are cubes with magnets arranged on their faces. The magnets are positioned so that each face has either magnetic south or north pole outward. Moreover, we require that the net magnetic moment of the cube passes through the center of opposing faces. These magnetic arrangements enable coupling when cube faces with opposite polarity are brought in close proximity and enable moving the cubes by controlling the orientation of a global magnetic field. This paper investigates the 2D and 3D shapes that can be constructed by magnetic modular cubes, and describes all possible magnet arrangements that obey these rules. We select ten magnetic arrangements and assign a "color" to each of them for ease of visualization and reference. We provide a method to enumerate the number of unique polyominoes and polycubes that can be constructed from a given set of colored cubes. We use this method to enumerate all arrangements for up to 20 modules in 2D and 16 modules in 3D. We provide a motion planner for 2D assembly and through simulations compare which arrangements require fewer movements to generate and which arrangements are more common. Hardware demonstrations explore the self-assembly and disassembly of these modules in 2D and 3D. 
    more » « less
  3. This paper presents 2D feedback control and open loop 3D trajectories of heterogeneous chemically catalyzing Janus particles. Self-actuated particles have enormous implications for both in vivo and in vitro environments, which make them a diverse resource for a variety of medical and assembly applications. Janus particles, consisting of cobalt and platinum hemispheres, can self-propel in hydrogen peroxide solutions due to platinum’s catalyzation properties. These particles are directionally controlled using static magnetic fields produced from a triaxial approximate Helmholtz coil system. Since the magnetization direction of Janus particles is often heterogeneous, and thereby not consistent with the propulsion direction, this creates a unique opportunity to explore the motion effects of these particles under 2D feedback control and open loop 3D control. Using a modified closed loop controller, Janus particles with magnetization both closely aligned and greatly misaligned to the propulsion vectors, were instructed to perform complex trajectories. These trajectories were then compared between trials to measure both consistency and accuracy. The effects of increasing offset between the magnetization and propulsion vectors were also analyzed. The effects this heterogeneity had on 3D motion is also briefly discussed. It is our hope going forward to develop a 3D closed loop control system that can retroactively account for variations in the magnetization vector. 
    more » « less
  4. Millimeter-scale magnetic rotating swimmers have multiple potential medical applications. They could, for example, navigate inside the bloodstream of a patient toward an occlusion and remove it. Magnetic rotating swimmers have internal magnets and propeller fins with a helical shape. A rotating magnetic field applies torque on the swimmer and makes it rotate. The shape of the swimmer, combined with the rotational movement, generates a propulsive force. Visual feedback is suitable for in-vitro closed-loop control. However, in-vivo procedures will require different feedback modalities due to the opacity of the human body. In this paper, we provide new methods and tools that enable the 3D control of a magnetic swimmer using a 2D ultrasonography device attached to a robotic arm to sense the swimmer’s position. We also provide an algorithm that computes the placement of the robotic arm and a controller that keeps the swimmer within the ultrasound imaging slice. The position measurement and closed-loop control were tested experimentally. 
    more » « less
  5. Abstract

    Kirigami, the ancient paper art of cutting, has recently emerged as a new approach to construct metamaterials with novel properties imparted by cuts. However, most studies are limited to thin sheets‐based 2D kirigami metamaterials with specific forms and limited reconfigurability due to planar connection constraints of cut units. Here, 3D modular kirigami is introduced by cutting bulk materials into spatially closed‐loop connected cut cubes to construct a new class of 3D kirigami metamaterials. The module is transformable with multiple degrees of freedom that can transform into versatile distinct daughter building blocks. Their conformable assembly creates a wealth of reconfigurable and disassemblable metamaterials with diverse structures and unique properties, including reconfigurable 1D column‐like materials, 2D lattice‐like metamaterials with phase transition of chirality, as well as 3D frustration‐free multilayered metamaterials with 3D auxetic behaviors and programmable deformation modes. This study largely expands the design space of kirigami metamaterials from 2D to 3D.

     
    more » « less