skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Lu, Zhipeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Climate vulnerability is higher in coastal regions. Communities can largely reduce their hazard vulnerabilities and increase their social resilience through design and planning, which could put cities on a trajectory for long-term stability. However, the silos within the design and planning communities and the gap between research and practice have made it difficult to achieve the goal for a flood resilient environment. Therefore, this paper suggests an AI (Artificial Intelligence)-driven platform to facilitate the flood resilience design and planning. This platform, with the active engagement of local residents, experts, policy makers, and practitioners, will break the aforementioned silos and close the knowledge gaps, which ultimately increases public awareness, improves collaboration effectiveness, and achieves the best design and planning outcomes. We suggest a holistic and integrated approach, bringing multiple disciplines (architectural design, landscape architecture, urban planning, geography, and computer science), and examining the pressing resilient issues at the macro, meso, and micro scales. 
    more » « less
  2. null (Ed.)
    We report light-driven levitation of macroscopic polymer films with nanostructured surface as candidates for long-duration near-space flight. We levitated centimeter-scale disks made of commercial 0.5-micron-thick mylar film coated with carbon nanotubes on one side. When illuminated with light intensity comparable to natural sunlight, the polymer disk heats up and interacts with incident gas molecules differently on the top and bottom sides, producing a net recoil force. We observed the levitation of 6-mm-diameter disks in a vacuum chamber at pressures between 10 and 30 Pa. Moreover, we controlled the flight of the disks using a shaped light field that optically trapped the levitating disks. Our experimentally validated theoretical model predicts that the lift forces can be many times the weight of the films, allowing payloads of up to 10 milligrams for sunlight-powered low-cost microflyers at altitudes of 50 to 100 km. 
    more » « less
  3. Abstract

    Let $K$ be any field, and let $n$ be a positive integer. If we denote by $\xi _{\textrm{SL}_n}\colon \textrm{SL}_n\times \textrm{SL}_n\to \textrm{SL}_n$ the commutator morphism over $K$, then $\xi _{\textrm{SL}_n}$ is flat over the complement of the center of $\textrm{SL}_n$.

    more » « less