skip to main content

Search for: All records

Creators/Authors contains: "Lubecke, Victor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cognitive buildings use data on how occupants respond to the built environment to proactively make occupant-centric adjustments to lighting, temperature, ventilation, and other environmental parameters. However, sensors that unobtrusively and ubiquitously measure occupant responses are lacking. Here we show that Doppler-radar based sensors, which can sense small physiological motions, provide accurate occupancy detection and estimation of vital signs in challenging, realistic circumstances. Occupancy was differentiated from an empty room over 93% of the time in a 3.4 m × 8.5 m conference room with a single sensor in both wall and ceiling-mounted configurations. Occupancy was successfully detected while an occupant was under the table, visibly blocked from the sensor, a scenario where infrared, ultrasound, and video-based occupancy sensors would fail. Heart and respiratory rates were detected in all seats in the conference room with a single ceiling-mounted sensor. The occupancy sensor can be used to control HVAC and lighting with a short, 1–2 min delay and to provide information for space utilization optimization. Heart and respiratory rate sensing could provide additional feedback to future human-building interactive systems that use vital signs to determine how occupant comfort and wellness is changing with time. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Identity authentication based on Doppler radar respiration sensing is gaining attention as it requires neither contact nor line of sight and does not give rise to privacy concerns associated with video imaging. Prior research demonstrating the recognition of individuals has been limited to isolated single subject scenarios. When two equidistant subjects are present, identification is more challenging due to the interference of respiration motion patterns in the reflected radar signal. In this research, respiratory signature separation techniques are functionally combined with machine learning (ML) classifiers for reliable subject identity authentication. An improved version of the dynamic segmentation algorithm (peak search and triangulation) was proposed, which can extract distinguishable airflow profile-related features (exhale area, inhale area, inhale/exhale speed, and breathing depth) for medium-scale experiments of 20 different participants to examine the feasibility of extraction of an individual’s respiratory features from a combined mixture of motions for subjects. Independent component analysis with the joint approximation of diagonalization of eigenmatrices (ICA-JADE) algorithm was employed to isolate individual respiratory signatures from combined mixtures of breathing patterns. The extracted hyperfeature sets were then evaluated by integrating two different popular ML classifiers, k-nearest neighbor (KNN) and support vector machine (SVM), for subject authentication. Accuracies of 97.5% for two-subject experiments and 98.33% for single-subject experiments were achieved, which supersedes the performance of prior reported methods. The proposed identity authentication approach has several potential applications, including security/surveillance, the Internet-of- Things (IoT) applications, virtual reality, and health monitoring. 
    more » « less
  3. Measurement of the body's displacement at multiple positions allows heart pulse wave propagation to be observed; this is an important step toward noncontact blood pressure measurement. This study investigates the feasibility of performing blood pressure measurements using skin displacement waveforms measured at two positions on a human body. To evaluate the accuracy of the proposed approach, this study uses a pair of laser displacement sensors to enable precise pulse transit time measurement. By comparing the displacement waveforms from the two sensors, the relationship between pulse transit time and blood pressure was evaluated. It is demonstrated experimentally that the blood pressure can be estimated with accuracy of 5.1 mmHg, which is equivalent to the error of an ordinary cuff-type blood pressure monitor. 
    more » « less
  4. Radar sensing of respiratory motion from unmanned aerial vehicles (UAVs) offers great promise for remote life sensing especially in post-disaster search and rescue applications. One major challenge for this technology is the management of motion artifacts from the moving UAV platform. Prior research has focused on using an adaptive filtering approach which requires installing a secondary radar module for capturing platform motion as a noise reference. This paper investigates the potential of the empirical mode decomposition (EMD) technique for the compensation of platform motion artifacts using only primary radar measurements. Experimental results demonstrated that the proposed EMD approach can extract the fundamental frequency of the breathing motion from the combined breathing and platform motion using only one radar, with an accuracy above 87%. 
    more » « less
  5. COVID-19, caused by SARS-CoV-2, is now a global pandemic disease. This outbreak has affected every aspect of life including work, leisure, and interaction with technology. Governments around the world have issued orders for travel bans, social distancing, and lockdown to control the spread of the virus and prevent strain on hospitals. This paper explores potential applications for radar-based non-contact remote respiration sensing technology that may help to combat the COVID-19 pandemic, and outlines potential advantages that may also help to reduce the spread of the virus. Applications arising from recent developments in the state of the art for transceiver and signal processing technologies will be discussed along associated technical implications. These applications include remote breathing rate monitoring, continuous identity authentication, occupancy detection, and hand gesture recognition. This paper also highlights future research directions that must be explored further to bring this innovative non-contact sensor technology into real-world implementation. 
    more » « less