Dynamic heterogeneity is a fundamental characteristic of glasses and undercooled liquids. The heterogeneous nature causes some of the key features of systems’ dynamics such as the temperature dependence of nonexponentiality and spatial enthalpy fluctuations. Commonly used phenomenological models such as Tool–Narayanaswamy–Moynihan (TNM) and Kovacs–Aklonis–Hutchinson–Ramos fail to fully capture this phenomenon. Here we propose a model that can predict the temperature-dependent nonexponential behavior observed in glass-forming liquids and glasses by fitting standard differential scanning calorimetry curves. This model extends the TNM framework of structural relaxation by introducing a distribution of equilibrium fictive temperature (Tfe) that accounts for heterogeneity in the undercooled liquid. This distribution is then frozen at the glass transition to account for the heterogeneous nature of the glass dynamics. The nonexponentiality parameter βKWW is obtained as a function of temperature by fitting the Kohlrauch-Williams-Watts (KWW) equation to the calculated relaxation function for various organic and inorganic undercooled liquids and glasses. The calculated temperature dependent βKWW shows good agreement with the experimental ones. We successfully model the relaxation dynamics far from equilibrium for two silicate systems that the TNM model fails to describe, confirming that temperature dependent nonexponentiality is necessary to fully describe these dynamics. The model also simulates the fluctuation of fictive temperature δTf during isothermal annealing with good qualitative agreement with the evolution of enthalpy fluctuation reported in the literature. We find that the evolution of enthalpy fluctuation during isothermal annealing heavily depends on the cooling rate, a dependence that was not previously emphasized.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 7, 2025
-
Owing to their ability for fast switching and the large property contrast between the crystalline and amorphous states that permits multi-level data storage, in-memory computing and neuromorphic computing, the investigation of phase change materials (PCMs) remains a highly active field of research. Yet, the continuous increase in electrical resistance (called drift) observed in the amorphous phase has so far hindered the commercial implementation of multi-level data storage. It was recently shown that the resistance drift is caused by aging-induced structural relaxation of the glassy phase, which is accompanied by a simultaneous decrease in enthalpy and fictive temperature. This implies that resistance is related to enthalpy relaxation. While the resistance is known to drift even at room temperature and below, evidence for enthalpy relaxation at room temperature in amorphous PCMs is still missing. Here, we monitor changes in enthalpy induced by long-term room-temperature aging in a series of PCMs. Our results demonstrate the simultaneity of resistance drift and enthalpy relaxation at room temperature, and thus provide further insights into the mechanism of resistance drift and its possible remediation.
Free, publicly-accessible full text available April 7, 2025 -
Abstract Disentangling nucleation and growth in materials that crystallize on the nanosecond time scale is experimentally quite challenging since the relevant processes also take place on very small, i.e., sub‐micrometer length scales. Phase change materials are bad glass formers, which often crystallize rapidly. Here systematic changes in crystallization kinetics are shown in pseudo‐binary compounds of GeTe and Sb2Te3and related solids subjected to short laser pulses. Upon systematic changes in stoichiometry, the speed of crystallization changes by three orders of magnitude concomitantly with pronounced changes in stochasticity. Resolving individual grains with electron backscatter diffraction (EBSD) permits to disentangle of the process of nucleation and growth. From these experiments, supported by multiphysics simulations of crystallization, it can be concluded that high crystallization speeds with small stochasticity characterize phase change materials with fast nucleation, while compounds that nucleate slowly crystallize much more stochastically.
Free, publicly-accessible full text available May 11, 2025 -
Many phase change materials (PCMs) are found to crystallize without exhibiting a glass transition endotherm upon reheating. In this paper, we review experimental evidence revealing that these PCMs and likely other hyperquenched molecular and metallic systems can crystallize from the glassy state when reheated at a standard rate. Among these evidences, PCMs annealed below the glass transition temperature T g exhibit slower crystallization kinetics despite an increase in the number of sub-critical nuclei that should promote the crystallization speed. Flash calorimetry uncovers the glass transition endotherm hidden by crystallization and reveals a distinct change in kinetics when crystallization switches from the glassy to the supercooled liquid state. The resulting T g value also rationalizes the presence of the pre- T g relaxation exotherm ubiquitous of hyperquenched systems. Finally, the shift in crystallization temperature during annealing exhibits a non-exponential decay that is characteristic of structural relaxation in the glass. Modeling using a modified Turnbull equation for nucleation rate supports the existence of sub- T g fast crystallization and emphasizes the benefit of a fragile-to-strong transition for PCM applications due to a reduction in crystallization at low temperature (improved data retention) and increasing its speed at high temperature (faster computing).more » « less
-
Pyramidal antireflective structures were produced by hot embossing single- and double-sides of an amorphous GeSe4optical element. The optical performances were measured across the wavelength range from 2 µm to 15 µm. The transmittance at normal incident angle was increased up to 75.6% and 79.8% for single and double-side embossing respectively. The experimental results were in close agreement with simulation performed using the rigorous coupled-wave analysis (RCWA). Theoretical models also predicted well the transmittance changes as a function of incident angle from 0 ° to 50 ° at a fixed laser wavelength of 5.1 µm. A Fabry-Perot interferometer consisting of two single surface embossed samples is proposed.