skip to main content


Title: Broadband pyramid antireflective structure on chalcogenide glasses by the hot embossing method for infrared photonics

Pyramidal antireflective structures were produced by hot embossing single- and double-sides of an amorphous GeSe4optical element. The optical performances were measured across the wavelength range from 2 µm to 15 µm. The transmittance at normal incident angle was increased up to 75.6% and 79.8% for single and double-side embossing respectively. The experimental results were in close agreement with simulation performed using the rigorous coupled-wave analysis (RCWA). Theoretical models also predicted well the transmittance changes as a function of incident angle from 0 ° to 50 ° at a fixed laser wavelength of 5.1 µm. A Fabry-Perot interferometer consisting of two single surface embossed samples is proposed.

 
more » « less
Award ID(s):
1640860
NSF-PAR ID:
10369415
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
12
Issue:
4
ISSN:
2159-3930
Page Range / eLocation ID:
Article No. 1638
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As a three-dimensional topological phase of matter, Weyl semimetals possess extremely large gyrotropic optical response in the mid-infrared region, leading to the strong chiral anomaly. This study proposes a circular polarizer design with a double-WSM-layer structure. It is theoretically shown that the proposed polarizer possesses a high circular polarization efficiency and high average transmittance in the wavelength region from 9 µm to 15 µm at incidence angles up to 50°. The modified 4 × 4 matrix method is used to calculate the circularly polarized transmittance of Weyl semimetals in thin-film or multilayer structures. The temperature dependence on the transmittance is also examined to demonstrate the flexibility of the proposed polarizer in a varying temperature environment. This study reveals the technological prospect that Weyl semimetals are promising candidates for high-performance circular polarizers in infrared spectroscopy and polarimetry. 
    more » « less
  2. Abstract

    The development of new optical materials and metamaterials has seen a natural progression toward both nanoscale geometries and dynamic performance. The development of these materials, such as optical metasurfaces which impart discrete, spatially dependent phase shifts on incident light, often benefits from the measurement of transmitted or reflected phase. Careful measurement of phase typically proves difficult to implement, due to high measurement sensitivity to practically unavoidable environmental sources of noise and drift. To date, no characterization technique has yet emerged as a frontrunner for these applications. This challenge is addressed using a custom‐designed three‐beam Mach–Zehnder interferometer capable of continuously referenced measurement of both phase and transmittance, resulting in a 10× reduction of noise and drift and phase measurement standard deviation over 10 min of 0.56° and over 16 h of 2.8°. High measurement stability provided by this method enables samples to be easily characterized under dynamic conditions. Temperature‐dependent measurements are demonstrated with phase‐change material vanadium dioxide (VO2), and with wavelength‐dependent measurements of a dielectric Huygens metasurface supporting a characteristic resonant reflection peak. A Fourier‐based signal filtering technique is applied, reducing measurement uncertainty to 0.13° and enabling discernment of monolayer thickness variations in 2D material MoS2.

     
    more » « less
  3. We demonstrate an on-chip spectrometer readily integrable with CMOS electronics. The structure is comprised of a SiO2/Si3N4/SiO2waveguide atop a silicon substrate. A transversely chirped grating is fabricated, in a single-step optical lithography process, on a portion of the waveguide to provide angle and wavelength dependent coupling to the guided mode. The spectral and angular information is encoded in the spatial dependence of the grating period. A uniform pitch grating area, separated from the collection area by an unpatterned propagation region, provides the out-coupling to a CMOS detector array. A resolution of 0.3 nm at 633 nm with a spectral coverage tunable across the visible and NIR (to ∼ 1 µm limited by the Si photodetector) by changing the angle of incidence, is demonstrated without the need for any signal processing deconvolution. This on-chip spectrometer concept will cost effectively enable a broad range of applications that are beyond the reach of current integrated spectroscopic technologies.

     
    more » « less
  4. Recent developments in micro-scale additive manufacturing (AM) have opened new possibilities in state-of-the-art areas, including microelectromechanical systems (MEMS) with intrinsically soft and compliant components. While fabrication with soft materials further complicates micro-scale AM, a soft photocurable polydimethylsiloxane (PDMS) resin, IP-PDMS, has recently entered the market of two-photon polymerization (2PP) AM. To facilitate the development of microdevices with soft components through the application of 2PP technique and IP-PDMS material, this research paper presents a comprehensive material characterization of IP-PDMS. The significance of this study lies in the scarcity of existing research on this material and the thorough investigation of its properties, many of which are reported here for the first time. Particularly, for uncured IP-PDMS resin, this work evaluates a surface tension of 26.7 ± 4.2 mN/m, a contact angle with glass of 11.5 ± 0.6°, spin-coating behavior, a transmittance of more than 90% above 440 nm wavelength, and FTIR with all the properties reported for the first time. For cured IP-PDMS, novel characterizations include a small mechanical creep, a velocity-dependent friction coefficient with glass, a typical dielectric permittivity value of 2.63 ± 0.02, a high dielectric/breakdown strength for 3D-printed elastomers of up to 73.3 ± 13.3 V/µm and typical values for a spin coated elastomer of 85.7 ± 12.4 V/µm, while the measured contact angle with water of 103.7 ± 0.5°, Young’s modulus of 5.96 ± 0.2 MPa, and viscoelastic DMA mechanical characterization are compared with the previously reported values. Friction, permittivity, contact angle with water, and some of the breakdown strength measurements were performed with spin-coated cured IP-PDMS samples. Based on the performed characterization, IP-PDMS shows itself to be a promising material for micro-scale soft MEMS, including microfluidics, storage devices, and micro-scale smart material technologies.

     
    more » « less
  5. Abstract Implantable image sensors have the potential to revolutionize neuroscience. Due to their small form factor requirements; however, conventional filters and optics cannot be implemented. These limitations obstruct high-resolution imaging of large neural densities. Recent advances in angle-sensitive image sensors and single-photon avalanche diodes have provided a path toward ultrathin lens-less fluorescence imaging, enabling plenoptic sensing by extending sensing capabilities to include photon arrival time and incident angle, thereby providing the opportunity for separability of fluorescence point sources within the context of light-field microscopy (LFM). However, the addition of spectral sensitivity to angle-sensitive LFM reduces imager resolution because each wavelength requires a separate pixel subset. Here, we present a 1024-pixel, 50  µm thick implantable shank-based neural imager with color-filter-grating-based angle-sensitive pixels. This angular-spectral sensitive front end combines a metal–insulator–metal (MIM) Fabry–Perot color filter and diffractive optics to produce the measurement of orthogonal light-field information from two distinct colors within a single photodetector. The result is the ability to add independent color sensing to LFM while doubling the effective pixel density. The implantable imager combines angular-spectral and temporal information to demix and localize multispectral fluorescent targets. In this initial prototype, this is demonstrated with 45 μm diameter fluorescently labeled beads in scattering medium. Fluorescent lifetime imaging is exploited to further aid source separation, in addition to detecting pH through lifetime changes in fluorescent dyes. While these initial fluorescent targets are considerably brighter than fluorescently labeled neurons, further improvements will allow the application of these techniques to in-vivo multifluorescent structural and functional neural imaging. 
    more » « less