skip to main content


Search for: All records

Creators/Authors contains: "Luo, Di"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2025
  2. Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    We study infinite limits of neural network quantum states (-NNQS), which exhibit representation power through ensemble statistics, and also tractable gradient descent dynamics. Ensemble averages of entanglement entropies are expressed in terms of neural network correlators, and architectures that exhibit volume-law entanglement are presented. The analytic calculations of entanglement entropy bound are tractable because the ensemble statistics are simplified in the Gaussian process limit. A general framework is developed for studying the gradient descent dynamics of neural network quantum states (NNQS), using a quantum state neural tangent kernel (QS-NTK). For-NNQS the training dynamics is simplified, since the QS-NTK becomes deterministic and constant. An analytic solution is derived for quantum state supervised learning, which allows an-NNQS to recover any target wavefunction. Numerical experiments on finite and infinite NNQS in the transverse field Ising model and Fermi Hubbard model demonstrate excellent agreement with theory.-NNQS opens up new opportunities for studying entanglement and training dynamics in other physics applications, such as in finding ground states.

     
    more » « less