We present a general approach to derive Lindblad master equations for a subsystem whose dynamics is coupled to dissipative bosonic modes. The derivation relies on a Schrieffer-Wolff transformation which allows to eliminate the bosonic degrees of freedom after self-consistently determining their state as a function of the coupled quantum system. We apply this formalism to the dissipative Dicke model and derive a Lindblad master equation for the atomic spins, which includes the coherent and dissipative interactions mediated by the bosonic mode. This master equation accurately predicts the Dicke phase transition and gives the correct steady state. In addition, we compare the dynamics using exact diagonalization and numerical integration of the master equation with the predictions of semiclassical trajectories. We finally test the performance of our formalism by studying the relaxation of a NOON state and show that the dynamics captures quantum metastability beyond the mean-field approximation.
more »
« less
Real-time dynamics of the Schwinger model as an open quantum system with Neural Density Operators
A<sc>bstract</sc> Ab-initio simulations of multiple heavy quarks propagating in a Quark-Gluon Plasma are computationally difficult to perform due to the large dimension of the space of density matrices. This work develops machine learning algorithms to overcome this difficulty by approximating exact quantum states with neural network parametrisations, specifically Neural Density Operators. As a proof of principle demonstration in a QCD-like theory, the approach is applied to solve the Lindblad master equation in the 1 + 1d lattice Schwinger Model as an open quantum system. Neural Density Operators enable the study of in-medium dynamics on large lattice volumes, where multiple-string interactions and their effects on string-breaking and recombination phenomena can be studied. Thermal properties of the system at equilibrium can also be probed with these methods by variationally constructing the steady state of the Lindblad master equation. Scaling of this approach with system size is studied, and numerical demonstrations on up to 32 spatial lattice sites and with up to 3 interacting strings are performed.
more »
« less
- Award ID(s):
- 2019786
- PAR ID:
- 10555698
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A system of multiple agents is considered which at random times change their discrete states on an Ising lattice as a results of their internal interactions and possibly some external control. For certain applications such as directed self-assembly of charged particles, the stochastic dynamics of such interacting agents is represented by a master equation, or equivalently, by a continuous-time Markov chain. The dimension of this master equation is typically large and numerically intractable, since it grows combinatorially with the lattice size. This paper presents two alternative models at significantly lower complexity growing polynomially with the size of Ising lattice. These models describe the interactive dynamics of the agents by two different classes of coupled stochastic differential equations driven by doubly stochastic Poisson processes (Cox processes).more » « less
-
Abstract Simulating open quantum systems, which interact with external environments, presents significant challenges on noisy intermediate‐scale quantum (NISQ) devices due to limited qubit resources and noise. In this study, an efficient framework is proposed for simulating open quantum systems on NISQ hardware by leveraging a time‐perturbative Kraus operator representation of the system's dynamics. This approach avoids the computationally expensive Trotterization method and exploits the Lindblad master equation to represent time evolution in a compact form, particularly for systems satisfying specific commutation relations. The efficiency of this method is demonstrated by simulating quantum channels, such as the continuous‐time Pauli channel and damped harmonic oscillators, on NISQ trapped‐ion hardware, including IonQ Harmony and Quantinuum H1‐1. Additionally, hardware‐agnostic error mitigation techniques are introduced, including Pauli channel fitting and quantum depolarizing channel inversion, to enhance the fidelity of quantum simulations. These results show strong agreement between the simulations on real quantum hardware and exact solutions, highlighting the potential of Kraus‐based methods for scalable and accurate simulation of open quantum systems on NISQ devices. This framework opens pathways for simulating more complex systems under realistic conditions in the near term.more » « less
-
Abstract Novel T centers in silicon hold great promise for quantum networking applications due to their telecom band optical transitions and the long-lived ground state electronic spins. An open challenge for advancing the T center platform is to enhance its weak and slow zero phonon line (ZPL) emission. In this work, by integrating single T centers with a low-loss, small mode-volume silicon photonic crystal cavity, we demonstrate an enhancement of the fluorescence decay rate by a factor ofF = 6.89. Efficient photon extraction enables the system to achieve an average ZPL photon outcoupling rate of 73.3 kHz under saturation, which is about two orders of magnitude larger than the previously reported value. The dynamics of the coupled system is well modeled by solving the Lindblad master equation. These results represent a significant step towards building efficient T center spin-photon interfaces for quantum information processing and networking applications.more » « less
An official website of the United States government

