- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Feng, Maria Q. (4)
-
Luo, Longxi (4)
-
Feng, Dongming (1)
-
Li, Zhijun (1)
-
Mita, Akira (1)
-
Wu, Zheng Y. (1)
-
Xie, Lijun (1)
-
Xu, Xiuli (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Xie, Lijun; Mita, Akira; Luo, Longxi; Feng, Maria Q. (, Structural Control and Health Monitoring)
-
Li, Zhijun; Feng, Maria Q.; Luo, Longxi; Feng, Dongming; Xu, Xiuli (, Mechanical Systems and Signal Processing)
-
Luo, Longxi; Feng, Maria Q. (, Computer-Aided Civil and Infrastructure Engineering)Abstract Computer vision‐based displacement measurement for structural monitoring has grown popular. However, tracking natural low‐contrast targets in low‐illumination conditions is inevitable for vision sensors in the field measurement, which poses challenges for intensity‐based vision‐sensing techniques. A new edge‐enhanced‐matching (EEM) technique improved from the previous orientation‐code‐matching (OCM) technique is proposed to enable robust tracking of low‐contrast features. Besides extracting gradient orientations from images as OCM, the proposed EEM technique also utilizes gradient magnitudes to identify and enhance subtle edge features to form EEM images. A ranked‐segmentation filtering technique is also developed to post‐process EEM images to make it easier to identify edge features. The robustness and accuracy of EEM in tracking low‐contrast features are validated in comparison with OCM in the field tests conducted on a railroad bridge and the long‐span Manhattan Bridge. Frequency domain analyses are also performed to further validate the displacement accuracy.more » « less