skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Edge‐Enhanced Matching for Gradient‐Based Computer Vision Displacement Measurement
Abstract Computer vision‐based displacement measurement for structural monitoring has grown popular. However, tracking natural low‐contrast targets in low‐illumination conditions is inevitable for vision sensors in the field measurement, which poses challenges for intensity‐based vision‐sensing techniques. A new edge‐enhanced‐matching (EEM) technique improved from the previous orientation‐code‐matching (OCM) technique is proposed to enable robust tracking of low‐contrast features. Besides extracting gradient orientations from images as OCM, the proposed EEM technique also utilizes gradient magnitudes to identify and enhance subtle edge features to form EEM images. A ranked‐segmentation filtering technique is also developed to post‐process EEM images to make it easier to identify edge features. The robustness and accuracy of EEM in tracking low‐contrast features are validated in comparison with OCM in the field tests conducted on a railroad bridge and the long‐span Manhattan Bridge. Frequency domain analyses are also performed to further validate the displacement accuracy.  more » « less
Award ID(s):
1738802
PAR ID:
10078354
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Computer-Aided Civil and Infrastructure Engineering
Volume:
33
Issue:
12
ISSN:
1093-9687
Page Range / eLocation ID:
p. 1019-1040
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Agaian, Sos S.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)
    High accuracy localization and user positioning tracking is critical in improving the quality of augmented reality environments. The biggest challenge facing developers is localizing the user based on visible surroundings. Current solutions rely on the Global Positioning System (GPS) for tracking and orientation. However, GPS receivers have an accuracy of about 10 to 30 meters, which is not accurate enough for augmented reality, which needs precision measured in millimeters or smaller. This paper describes the development and demonstration of a head-worn augmented reality (AR) based vision-aid indoor navigation system, which localizes the user without relying on a GPS signal. Commercially available augmented reality head-set allows individuals to capture the field of vision using the front-facing camera in a real-time manner. Utilizing captured image features as navigation-related landmarks allow localizing the user in the absence of a GPS signal. The proposed method involves three steps: a detailed front-scene camera data is collected and generated for landmark recognition; detecting and locating an individual’s current position using feature matching, and display arrows to indicate areas that require more data collects if needed. Computer simulations indicate that the proposed augmented reality-based vision-aid indoor navigation system can provide precise simultaneous localization and mapping in a GPS-denied environment. Keywords: Augmented-reality, navigation, GPS, HoloLens, vision, positioning system, localization 
    more » « less
  2. Vision-based sensing, when utilized in conjunction with camera-equipped unmanned aerial vehicles (UAVs), has recently emerged as an effective sensing technique in a variety of civil engineering applications (e.g., construction monitoring, conditional assessment, and post-disaster reconnaissance). However, the use of these non-intrusive sensing techniques for extracting the dynamic response of structures has been restricted due to the perspective and scale distortions or image misalignments caused by the movement of the UAV and its on-board camera during flight operations. To overcome these limitations, a vision-based analysis methodology is proposed in the present study for extracting the dynamic response of structures using unmanned aerial vehicle (UAV) aerial videos. Importantly, geo-referenced targets were strategically placed on the structures and the background (stationary) region to enhance the robustness and accuracy related to image feature detection. Image processing and photogrammetric techniques are adopted in the analysis procedures first to recover the camera motion using the world-to-image correspondences of the background (stationary) targets and subsequently to extract the dynamic structural response by reprojecting the image feature of the (moving) targets attached to the structures to the world coordinates. The displacement tracking results are validated using the responses of two full-scale test structures measured by analog displacement sensors during a sequence of shake table tests. The high level of precision (less than 3 mm root-mean-square errors) of the vision-based structural displacement results demonstrates the effectiveness of the proposed UAV displacement tracking methodology. Additionally, the limitations and potential solutions associated with the proposed methodology for monitoring the dynamic responses of real structures are discussed. 
    more » « less
  3. Abstract Image texture, the relative spatial arrangement of intensity values in an image, encodes valuable information about the scene. As it stands, much of this potential information remains untapped. Understanding how to decipher textural details would afford another method of extracting knowledge of the physical world from images. In this work, we attempt to bridge the gap in research between quantitative texture analysis and the visual perception of textures. The impact of changes in image texture on human observer’s ability to perform signal detection and localization tasks in complex digital images is not understood. We examine this critical question by studying task-based human observer performance in detecting and localizing signals in tomographic breast images. We have also investigated how these changes impact the formation of second-order image texture. We used digital breast tomosynthesis (DBT) an FDA approved tomographic X-ray breast imaging method as the modality of choice to show our preliminary results. Our human observer studies involve localization ROC (LROC) studies for low contrast mass detection in DBT. Simulated images are used as they offer the benefit of known ground truth. Our results prove that changes in system geometry or processing leads to changes in image texture magnitudes. We show that the variations in several well-known texture features estimated in digital images correlate with human observer detection–localization performance for signals embedded in them. This insight can allow efficient and practical techniques to identify the best imaging system design and algorithms or filtering tools by examining the changes in these texture features. This concept linking texture feature estimates and task based image quality assessment can be extended to several other imaging modalities and applications as well. It can also offer feedback in system and algorithm designs with a goal to improve perceptual benefits. Broader impact can be in wide array of areas including imaging system design, image processing, data science, machine learning, computer vision, perceptual and vision science. Our results also point to the caution that must be exercised in using these texture features as image-based radiomic features or as predictive markers for risk assessment as they are sensitive to system or image processing changes. 
    more » « less
  4. Unmanned aerial vehicle (UAV) vision-based sensing has become an emerging technology for structural health monitoring (SHM) and post-disaster damage assessment of civil infrastructure. This article proposes a framework for monitoring structural displacement under earthquakes by reprojecting image points obtained courtesy of UAV-captured videos to the 3-D world space based on the world-to-image point correspondences. To identify optimal features in the UAV imagery, geo-reference targets with various patterns were installed on a test building specimen, which was then subjected to earthquake shaking. A feature point tracking-based algorithm for square checkerboard patterns and a Hough Transform-based algorithm for concentric circular patterns are developed to ensure reliable detection and tracking of image features. Photogrammetry techniques are applied to reconstruct the 3-D world points and extract structural displacements. The proposed methodology is validated by monitoring the displacements of a full-scale 6-story mass timber building during a series of shake table tests. Reasonable accuracy is achieved in that the overall root-mean-square errors of the tracking results are at the millimeter level compared to ground truth measurements from analog sensors. Insights on optimal features for monitoring structural dynamic response are discussed based on statistical analysis of the error characteristics for the various reference target patterns used to track the structural displacements. 
    more » « less
  5. Existing solutions to visual simultaneous localization and mapping (VSLAM) assume that errors in feature extraction and matching are independent and identically distributed (i.i.d), but this assumption is known to not be true – features extracted from low-contrast regions of images exhibit wider error distributions than features from sharp corners. Furthermore, V-SLAM algorithms are prone to catastrophic tracking failures when sensed images include challenging conditions such as specular reflections, lens flare, or shadows of dynamic objects. To address such failures, previous work has focused on building more robust visual frontends, to filter out challenging features. In this paper, we present introspective vision for SLAM (IV-SLAM), a fundamentally different approach for addressing these challenges. IV-SLAM explicitly models the noise process of reprojection errors from visual features to be context-dependent, and hence non-i.i.d. We introduce an autonomously supervised approach for IV-SLAM to collect training data to learn such a context-aware noise model. Using this learned noise model, IV-SLAM guides feature extraction to select more features from parts of the image that are likely to result in lower noise, and further incorporate the learned noise model into the joint maximum likelihood estimation, thus making it robust to the aforementioned types of errors. We present empirical results to demonstrate that IV-SLAM 1) is able to accurately predict sources of error in input images, 2) reduces tracking error compared to V-SLAM, and 3) increases the mean distance between tracking failures by more than 70% on challenging real robot data compared to V-SLAM. 
    more » « less