skip to main content


Search for: All records

Creators/Authors contains: "Luo, Tengfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polymeric membranes have become essential for energy-efficient gas separations such as natural gas sweetening, hydrogen separation, and carbon dioxide capture. Polymeric membranes face challenges like permeability-selectivity tradeoffs, plasticization, and physical aging, limiting their broader applicability. Machine learning (ML) techniques are increasingly used to address these challenges. This review covers current ML applications in polymeric gas separation membrane design, focusing on three key components: polymer data, representation methods, and ML algorithms. Exploring diverse polymer datasets related to gas separation, encompassing experimental, computational, and synthetic data, forms the foundation of ML applications. Various polymer representation methods are discussed, ranging from traditional descriptors and fingerprints to deep learning-based embeddings. Furthermore, we examine diverse ML algorithms applied to gas separation polymers. It provides insights into fundamental concepts such as supervised and unsupervised learning, emphasizing their applications in the context of polymer membranes. The review also extends to advanced ML techniques, including data-centric and model-centric methods, aimed at addressing challenges unique to polymer membranes, focusing on accurate screening and inverse design.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Chemical reaction data has existed and still largely exists in unstructured forms. But curating such information into datasets suitable for tasks such as yield and reaction outcome prediction is impractical via manual curation and not possible to automate through programmatic means alone. Large language models (LLMs) have emerged as potent tools, showcasing remarkable capabilities in processing textual information and therefore could be extremely useful in automating this process. To address the challenge of unstructured data, we manually curated a dataset of structured chemical reaction data to fine-tune and evaluate LLMs. We propose a paradigm that leverages prompt-tuning, fine-tuning techniques, and a verifier to check the extracted information. We evaluate the capabilities of various LLMs, including LLAMA-2 and GPT models with different parameter counts, on the data extraction task. Our results show that prompt tuning of GPT-4 yields the best accuracy and evaluation results. Fine-tuning LLAMA-2 models with hundreds of samples does enable them and organize scientific material according to user-defined schemas better though. This workflow shows an adaptable approach for chemical reaction data extraction but also highlights the challenges associated with nuance in chemical information. We open-sourced our code at GitHub. 
    more » « less
    Free, publicly-accessible full text available October 21, 2025
  3. Free, publicly-accessible full text available December 1, 2025
  4. Abstract

    The development and design of energy materials are essential for improving the efficiency, sustainability, and durability of energy systems to address climate change issues. However, optimizing and developing energy materials can be challenging due to large and complex search spaces. With the advancements in computational power and algorithms over the past decade, machine learning (ML) techniques are being widely applied in various industrial and research areas for different purposes. The energy material community has increasingly leveraged ML to accelerate property predictions and design processes. This article aims to provide a comprehensive review of research in different energy material fields that employ ML techniques. It begins with foundational concepts and a broad overview of ML applications in energy material research, followed by examples of successful ML applications in energy material design. We also discuss the current challenges of ML in energy material design and our perspectives. Our viewpoint is that ML will be an integral component of energy materials research, but data scarcity, lack of tailored ML algorithms, and challenges in experimentally realizing ML-predicted candidates are major barriers that still need to be overcome.

     
    more » « less
  5. Graph rationales are representative subgraph structures that best explain and support the graph neural network (GNN) predictions. Graph rationalization involves the joint identification of these subgraphs during GNN training, resulting in improved interpretability and generalization. GNN is widely used for node-level tasks such as paper classification and graph-level tasks such as molecular property prediction. However, on both levels, little attention has been given to GNN rationalization and the lack of training examples makes it difficult to identify the optimal graph rationales. In this work, we address the problem by proposing a unified data augmentation framework with two novel operations on environment subgraphs to rationalize GNN prediction. We define the environment subgraph as the remaining subgraph after rationale identification and separation. The framework efficiently performs rationale–environment separation in therepresentation spacefor a node’s neighborhood graph or a graph’s complete structure to avoid the high complexity of explicit graph decoding and encoding. We conduct experiments on 17 datasets spanning node classification, graph classification, and graph regression. Results demonstrate that our framework is effective and efficient in rationalizing and enhancing GNNs for different levels of tasks on graphs.

     
    more » « less
    Free, publicly-accessible full text available May 31, 2025
  6. Abstract

    Chemical vapor infiltration (CVI) is a widely adopted manufacturing technique used in producing carbon-carbon and carbon-silicon carbide composites. These materials are especially valued in the aerospace and automotive industries for their robust strength and lightweight characteristics. The densification process during CVI critically influences the final performance, quality, and consistency of these composite materials. Experimentally optimizing the CVI processes is challenging due to the long experimental time and large optimization space. To address these challenges, this work takes a modeling-centric approach. Due to the complexities and limited experimental data of the isothermal CVI densification process, we have developed a data-driven predictive model using the physics-integrated neural differentiable (PiNDiff) modeling framework. An uncertainty quantification feature has been embedded within the PiNDiff method, bolstering the model’s reliability and robustness. Through comprehensive numerical experiments involving both synthetic and real-world manufacturing data, the proposed method showcases its capability in modeling densification during the CVI process. This research highlights the potential of the PiNDiff framework as an instrumental tool for advancing our understanding, simulation, and optimization of the CVI manufacturing process, particularly when faced with sparse data and an incomplete description of the underlying physics.

     
    more » « less
    Free, publicly-accessible full text available June 5, 2025
  7. Solar-heating siphon-assisted oil recovery is promising as an eco-friendly strategy for oil spill mitigation due to its spontaneous, continuous, and renewable operation.

     
    more » « less
    Free, publicly-accessible full text available May 28, 2025
  8. Abstract

    Polymers play an integral role in various applications, from everyday use to advanced technologies. In the era of machine learning (ML), polymer informatics has become a vital field for efficiently designing and developing polymeric materials. However, the focus of polymer informatics has predominantly centered on single-component polymers, leaving the vast chemical space of polymer blends relatively unexplored. This study employs a high-throughput molecular dynamics (MD) simulation combined with active learning (AL) to uncover polymer blends with enhanced thermal conductivity (TC) compared to the constituent single-component polymers. Initially, the TC of about 600 amorphous single-component polymers and 200 amorphous polymer blends with varying blending ratios are determined through MD simulations. The optimal representation method for polymer blends is identified, which involves a weighted sum approach that extends existing polymer representation from single-component polymers to polymer blends. An AL framework, combining MD simulation and ML, is employed to explore the TC of approximately 550,000 unlabeled polymer blends. The AL framework proves highly effective in accelerating the discovery of high-performance polymer blends for thermal transport. Additionally, we delve into the relationship between TC, radius of gyration (Rg), and hydrogen bonding, highlighting the roles of inter- and intra-chain interactions in thermal transport in amorphous polymer blends. A significant positive association between TC andRgimprovement and an indirect contribution from H-bond interaction to TC enhancement are revealed through a log-linear model and an odds ratio calculation, emphasizing the impact of increasingRgand H-bond interactions on enhancing polymer blend TC.

     
    more » « less
  9. Free, publicly-accessible full text available June 1, 2025