This content will become publicly available on June 5, 2025
Chemical vapor infiltration (CVI) is a widely adopted manufacturing technique used in producing carbon-carbon and carbon-silicon carbide composites. These materials are especially valued in the aerospace and automotive industries for their robust strength and lightweight characteristics. The densification process during CVI critically influences the final performance, quality, and consistency of these composite materials. Experimentally optimizing the CVI processes is challenging due to the long experimental time and large optimization space. To address these challenges, this work takes a modeling-centric approach. Due to the complexities and limited experimental data of the isothermal CVI densification process, we have developed a data-driven predictive model using the physics-integrated neural differentiable (PiNDiff) modeling framework. An uncertainty quantification feature has been embedded within the PiNDiff method, bolstering the model’s reliability and robustness. Through comprehensive numerical experiments involving both synthetic and real-world manufacturing data, the proposed method showcases its capability in modeling densification during the CVI process. This research highlights the potential of the PiNDiff framework as an instrumental tool for advancing our understanding, simulation, and optimization of the CVI manufacturing process, particularly when faced with sparse data and an incomplete description of the underlying physics.
more » « less- Award ID(s):
- 2047127
- PAR ID:
- 10519145
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Purpose There is recent emphasis on designing new materials and alloys specifically for metal additive manufacturing (AM) processes, in contrast to AM of existing alloys that were developed for other traditional manufacturing methods involving considerably different physics. Process optimization to determine processing recipes for newly developed materials is expensive and time-consuming. The purpose of the current work is to use a systematic printability assessment framework developed by the co-authors to determine windows of processing parameters to print defect-free parts from a binary nickel-niobium alloy (NiNb5) using laser powder bed fusion (LPBF) metal AM. Design/methodology/approach The printability assessment framework integrates analytical thermal modeling, uncertainty quantification and experimental characterization to determine processing windows for NiNb5 in an accelerated fashion. Test coupons and mechanical test samples were fabricated on a ProX 200 commercial LPBF system. A series of density, microstructure and mechanical property characterization was conducted to validate the proposed framework. Findings Near fully-dense parts with more than 99% density were successfully printed using the proposed framework. Furthermore, the mechanical properties of as-printed parts showed low variability, good tensile strength of up to 662 MPa and tensile ductility 51% higher than what has been reported in the literature. Originality/value Although many literature studies investigate process optimization for metal AM, there is a lack of a systematic printability assessment framework to determine manufacturing process parameters for newly designed AM materials in an accelerated fashion. Moreover, the majority of existing process optimization approaches involve either time- and cost-intensive experimental campaigns or require the use of proprietary computational materials codes. Through the use of a readily accessible analytical thermal model coupled with statistical calibration and uncertainty quantification techniques, the proposed framework achieves both efficiency and accessibility to the user. Furthermore, this study demonstrates that following this framework results in printed parts with low degrees of variability in their mechanical properties.more » « less
-
Abstract Inkjet printing (IJP) is an additive manufacturing process capable to produce intricate functional structures. The IJP process performance and the quality of the printed parts are considerably affected by the deposited droplets’ volume. Obtaining consistent droplets volume during the process is difficult to achieve because the droplets are prone to variations due to various material properties, process parameters, and environmental conditions. Experimental (i.e., IJP setup observations) and computational (i.e., computational fluid dynamics (CFD)) analysis are used to study the droplets variability; however, they are expensive and computationally inefficient, respectively. The objective of this paper is to propose a framework that can perform fast and accurate droplet volume predictions for unseen IJP driving voltage regimes. A two-step approach is adopted: (1) an emulator is constructed from the physics-based droplet volume simulations to overcome the computational complexity and (2) the emulator is calibrated by incorporating the experimental IJP observations. In particular, a scaled Gaussian stochastic process (s-GaSP) is deployed for the emulation and calibration. The resulting surrogate model is able to rapidly and accurately predict the IJP droplets volume. The proposed methodology is demonstrated by calibrating the simulated data (i.e., CFD droplet simulations) emulator with experimental data from two distinct materials, namely glycerol and isopropyl alcohol.
-
Powder Bed Fusion (PBF) is a type of additive manufacturing process that builds parts out of metal powder in a layerwise fashion. Quality control (QC) remains an unsolved problem for PBF. Data-driven models of PBF are expensive to train and maintain, in terms of materials and machine time, because they are sensitive to changes in processing conditions.The length and time scale discrepancies of the process make physics-based modeling impractical to implement. We propose monitoring PBF with an Ensemble Kalman Filter (EnKF). The EnKF combines the computational efficiency of datadriven models with the flexibility of physics-based models, while mitigating the flaws of either method. We validate EnKF performance for linear process models, using finite element method data in place of measured experimental data. We show that the EnKF can reduce the error signal 2-norm and 1-norm relative to the open loop model by as much as 75%.more » « less
-
A Data-Driven Approach for Process Optimization of Metallic Additive Manufacturing Under UncertaintyThe presence of various uncertainty sources in metal-based additive manufacturing (AM) process prevents producing AM products with consistently high quality. Using electron beam melting (EBM) of Ti-6Al-4V as an example, this paper presents a data-driven framework for process parameters optimization using physics-informed computer simulation models. The goal is to identify a robust manufacturing condition that allows us to constantly obtain equiaxed materials microstructures under uncertainty. To overcome the computational challenge in the robust design optimization under uncertainty, a two-level data-driven surrogate model is constructed based on the simulation data of a validated high-fidelity multiphysics AM simulation model. The robust design result, indicating a combination of low preheating temperature, low beam power, and intermediate scanning speed, was acquired enabling the repetitive production of equiaxed structure products as demonstrated by physics-based simulations. Global sensitivity analysis at the optimal design point indicates that among the studied six noise factors, specific heat capacity and grain growth activation energy have the largest impact on the microstructure variation. Through this exemplar process optimization, the current study also demonstrates the promising potential of the presented approach in facilitating other complicate AM process optimizations, such as robust designs in terms of porosity control or direct mechanical property control.more » « less
-
The future of intelligent manufacturing machines involves autonomous selection of process parameters to maximize productivity while maintaining quality within specified constraints. To effectively optimize process parameters, these machines need to adapt to existing uncertainties in the physical system. This paper proposes a novel framework and methodology for feedrate optimization that is based on a physics-informed data-driven digital twin with quantified uncertainty. The servo dynamics are modeled using a digital twin, which incorporates the known uncertainty in the physics-based models and predicts the distribution of contour error using a data-driven model that learns the unknown uncertainty on-the-fly by sensor measurements. Using the quantified uncertainty, the proposed feedrate optimization maximizes productivity while maintaining quality under desired servo error constraints and stringency (i.e., the tolerance for constraint violation under uncertainty) using a model predictive control framework. Experimental results obtained using a 3-axis desktop CNC machine tool and a desktop 3D printer demonstrate significant cycle time reductions of up to 38% and 17% respectively, while staying close to the error tolerances compared to the existing methods.more » « less