skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Lurie, Emma"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Activists, journalists, and scholars have long raised critical questions about the relationship between diversity, representation, and structural exclusions in data-intensive tools and services. We build on work mapping the emergent landscape of corporate AI ethics to center one outcome of these conversations: the incorporation of diversity and inclusion in corporate AI ethics activities. Using interpretive document analysis and analytic tools from the values in design field, we examine how diversity and inclusion work is articulated in public-facing AI ethics documentation produced by three companies that create application and services layer AI infrastructure: Google, Microsoft, and Salesforce. We find that as these documents make diversity and inclusion more tractable to engineers and technical clients, they reveal a drift away from civil rights justifications that resonates with the “managerialization of diversity” by corporations in the mid-1980s. The focus on technical artifacts — such as diverse and inclusive datasets — and the replacement of equity with fairness make ethical work more actionable for everyday practitioners. Yet, they appear divorced from broader DEI initiatives and relevant subject matter experts that could provide needed context to nuanced decisions around how to operationalize these values and new solutions. Finally, diversity and inclusion, as configured by engineering logic, positions firms not as “ethics owners” but as ethics allocators; while these companies claim expertise on AI ethics, the responsibility of defining who diversity and inclusion are meant to protect and where it is relevant is pushed downstream to their customers. 
    more » « less
  2. De Cristofaro, Emiliano ; Nakov, Preslav (Ed.)
    Google’s reviewed claims feature was an early attempt to incorporate additional credibility signals from fact-checking onto the search results page. The feature, which appeared when users searched for the name of a subset of news publishers, was criticized by dozens of publishers for its errors and alleged anticonservative bias. By conducting an audit of news publisher search results and focusing on the critiques of publishers, we find that there is a lack of consensus between fact-checking ecosystem stakeholders that may be important to address in future iterations of public facing fact-checking tools. In particular, we find that a lack of transparency coupled with a lack of consensus on what makes a fact-check relevant to a news article led to the breakdown of reviewed claims. 
    more » « less
  3. Search engines, by ranking a few links ahead of million others based on opaque rules, open themselves up to criticism of bias. Previous research has focused on measuring political bias of search engine algorithms to detect possible search engine manipulation effects on voters or unbalanced ideological representation in search results. Insofar that these concerns are related to the principle of fairness, this notion of fairness can be seen as explicitly oriented toward election candidates or political processes and only implicitly oriented toward the public at large. Thus, we ask the following research question: how should an auditing framework that is explicitly centered on the principle of ensuring and maximizing fairness for the public (i.e., voters) operate? To answer this question, we qualitatively explore four datasets about elections and politics in the United States: 1) a survey of eligible U.S. voters about their information needs ahead of the 2018 U.S. elections, 2) a dataset of biased political phrases used in a large-scale Google audit ahead of the 2018 U.S. election, 3) Google’s “related searches” phrases for two groups of political candidates in the 2018 U.S. election (one group is composed entirely of women), and 4) autocomplete suggestions and result pages for a set of searches on the day of a statewide election in the U.S. state of Virginia in 2019. We find that voters have much broader information needs than the search engine audit literature has accounted for in the past, and that relying on political science theories of voter modeling provides a good starting point for informing the design of voter-centered audits. 
    more » « less
  4. Algorithmic auditing has emerged as an important methodology that gleans insights from opaque platform algorithms. These audits often rely on the repeated observations of an algorithm’s outputs given a fixed set of inputs. For example, to audit Google search, one repeatedly inputs queries and captures the resulting search pages. Then, the goal is to uncover patterns in the data that reveal the “secrets” of algorithmic decision making. In this paper, we introduce one particular algorithm audit, that of Google’s Top stories. We describe the process of data collection, exploration, and analysis for this application and share some of the insights. Concretely, our analysis suggests that Google may be trying to burst the “filter bubble” by choosing less known publishers for the 3rd position in the Top stories. In addition to revealing the behavior of the platform, the audit also illustrated that a subset of publishers cover certain stories more than others. 
    more » « less