skip to main content


Search for: All records

Creators/Authors contains: "Lynd, Nathaniel A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Aqueous zinc‐ion batteries are promising alternatives to lithium‐ion batteries due to their cost‐effectiveness and improved safety. However, several challenges, including corrosion, dendrites, and water decomposition at the Zn anode, hinder their performance. Herein, an approach is proposed, that deviates from the conventional design by adding water into a propylene carbonate‐based organic electrolyte to prepare a non‐flammable “water‐in‐organic” electrolyte. The chaotropic salt Zn(ClO4)2exploits the Hofmeister effect to promote the miscibility of immiscible liquid phases. Interactions between propylene carbonate and water restrict water activity and mitigate unfavorable reactions. This electrolyte facilitates preferential Zn (002) deposition and the formation of solid electrolyte interphase. Consequently, the “water‐in‐organic” electrolyte achieves a 99.5% Coulombic efficiency at 1 mA cm−2over 1000 cycles in Zn/Cu cells, and constant cycling over 1000 h in Zn/Zn symmetric cells. A Na0.33V2O5/Zn battery exhibits impressive cycling stability with a capacity of 175 mAh g−1for 800 cycles at 2 A g−1. Additionally, this electrolyte enables sustainable cycling across a wide temperature range from −20 to 50 °C. The design of a “water‐in‐organic” electrolyte employing a chaotropic salt presents a potential strategy for high‐performance electrolytes in zinc‐ion batteries with a large stability window and a wide temperature range.

     
    more » « less
  2. Cyclohexene oxide (CHO) is a useful building block for the synthesis of novel materials and is a model substrate for polymerization catalyst development. The driving force for CHO polymerization is derived from its bicyclic structure, which combines the release of the enthalpy from epoxide ring-opening (ca. −15 kcal/mol) and a twist-chair-to-chair conformation shift in the cyclohexane ring (ca. −5 kcal/mol) upon enchainment. The lack of regio-defined functional handles attached to the CHO monomer limits the ability to both pre- and post-functionalize the resultant materials and establish structure–property relationships, which reduces the versatility of currently accessible materials. We report the synthesis of two series of CHO derivatives with butyl, allyl, and halogen substituents in the α and β positions relative to the epoxide ring. Adding substituents to the CHO ring was found to affect polymerization kinetics, with 4-substituted (β) CHO being more reactive than 3-substituted (α) CHO analogs when initiated with a mono(μ-alkoxo)bis(alkylaluminum) pre-catalyst. Polymer thermal properties depended on substituent location and identity. Halogenated CHO rings were most reactive and produced the highest glass transition temperatures in the resultant polymers (up to 105 °C). Density functional theory revealed a possible mechanistic explanation consistent with the observed differences in polymerization rate for the 3- and 4-substituted CHOs derived from a combination of steric and thermodynamic considerations. 
    more » « less
  3. Polyethers and polythioethers are often made through the polymerization of epoxides and thiiranes, respectively, using Earth-abundant metal compounds. Control over polymer properties is dictated by the method used to synthesize them, which are outlined in this article.

     
    more » « less