Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aims.We aim to accurately measure the dynamical mass and distance of Cepheids by combining radial velocity measurements with interferometric observations. Cepheid mass measurements are particularly necessary for solving the Cepheid mass discrepancy, while independent distance determinations provide a crucial test of the period–luminosity relation andGaiaparallaxes. Methods.We used the multi-telescope interferometric combiner, the Michigan InfraRed Combiner (MIRC) of the Center for High Angular Resolution Astronomy (CHARA) Array, to detect and measure the astrometric positions of the high-contrast companion orbiting the Galactic Cepheid SU Cygni. We also present new radial velocity measurements from ultraviolet spectra taken with theHubbleSpace Telescope. The combination of interferometric astrometry with optical and ultraviolet spectroscopy provided the full orbital elements of the system, in addition to component masses and the distance to the Cepheid system. Results.We measured the mass of the Cepheid,MA = 4.859 ± 0.058 M⊙, and its two companions,MBa = 3.595 ± 0.033 M⊙andMBb = 1.546 ± 0.009 M⊙. This is the most accurate existing measurement of the mass of a Galactic Cepheid (1.2%). Comparing with stellar evolution models, we show that the mass predicted by the tracks is higher than the measured mass of the Cepheid, which is similar to the conclusions of our previous work. We also measured the distance to the system to be 926.3 ± 5.0 pc, obtaining an unprecedented parallax precision of 6 μas (0.5%), which is the most precise and accurate distance for a Cepheid. This precision is similar to what is expected byGaiafor its last data release (DR5 in ∼2030) for single stars fainter thanG = 13, but is not guaranteed for stars as bright as SU Cyg. Conclusions.We demonstrate that evolutionary models remain incapable of accurately reproducing the measured mass of Cepheids, often predicting higher masses for the expected metallicity, even when factors such as rotation or convective core overshooting are taken into account. Our precise distance measurement allowed us to compare predictions from some period–luminosity relations. We find a disagreement of 0.2–0.5 mag with relations calibrated from photometry, while relations calibrated from a direct distance measurement are in better agreement.more » « lessFree, publicly-accessible full text available January 1, 2026
-
We report discovering an exoplanet from following up a microlensing event alerted by Gaia. The event Gaia22dkv is toward a disk source rather than the traditional bulge microlensing fields. Our primary analysis yields a Jovian planet with at a projected orbital separation au, and the host is a ∼1.1 M ⊙ turnoff star at ∼1.3 kpc. At , the host is far brighter than any previously discovered microlensing planet host, opening up the opportunity to test the microlensing model with radial velocity (RV) observations. RV data can be used to measure the planet's orbital period and eccentricity, and they also enable searching for inner planets of the microlensing cold Jupiter, as expected from the "inner–outer correlation" inferred from Kepler and RV discoveries. Furthermore, we show that Gaia astrometric microlensing will not only allow precise measurements of its angular Einstein radius θ E but also directly measure the microlens parallax vector and unambiguously break a geometric light-curve degeneracy, leading to the definitive characterization of the lens system.more » « less
-
Abstract We resolve the multiple images of the binary-lens microlensing event ASASSN-22av using the GRAVITY instrument of the Very Large Telescope Interferometer (VLTI). The light curves show weak binary-lens perturbations, complicating the analysis, but the joint modeling with the VLTI data breaks several degeneracies, arriving at a strongly favored solution. Thanks to precise measurements of the angular Einstein radiusθE= 0.724 ± 0.002 mas and microlens parallax, we determine that the lens system consists of two M dwarfs with masses ofM1= 0.258 ± 0.008M⊙andM2= 0.130 ± 0.007M⊙, a projected separation ofr⊥= 6.83 ± 0.31 au, and a distance ofDL= 2.29 ± 0.08 kpc. The successful VLTI observations of ASASSN-22av open up a new path for studying intermediate-separation (i.e., a few astronomical units) stellar-mass binaries, including those containing dark compact objects such as neutron stars and stellar-mass black holes.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract We report discovering an exoplanet from following up a microlensing event alerted by Gaia. The event Gaia22dkv is toward a disk source rather than the traditional bulge microlensing fields. Our primary analysis yields a Jovian planet with at a projected orbital separation au, and the host is a ∼1.1M⊙turnoff star at ∼1.3 kpc. At , the host is far brighter than any previously discovered microlensing planet host, opening up the opportunity to test the microlensing model with radial velocity (RV) observations. RV data can be used to measure the planet’s orbital period and eccentricity, and they also enable searching for inner planets of the microlensing cold Jupiter, as expected from the “inner–outer correlation” inferred from Kepler and RV discoveries. Furthermore, we show that Gaia astrometric microlensing will not only allow precise measurements of its angular Einstein radiusθEbut also directly measure the microlens parallax vector and unambiguously break a geometric light-curve degeneracy, leading to the definitive characterization of the lens system.more » « less
-
Context . The study of the multiplicity of massive stars gives hints on their formation processes and their evolutionary paths, which are still not fully understood. Large separation binaries (>50 milliseconds of arc, mas) can be probed by adaptive-optics-assisted direct imaging and sparse aperture masking, while close binaries can be resolved by photometry and spectroscopy. However, optical long baseline interferometry is mandatory to establish the multiplicity of Galactic massive stars at the separation gap between 1 and 50 mas. Aims . In this paper, we aim to demonstrate the capability of the new interferometric instrument MIRC-X, located at the CHARA Array, to study the multiplicity of O-type stars and therefore probe the full range of separation for more than 120 massive stars ( H < 7 . 5 mag). Methods . We initiated a pilot survey of bright O-type stars ( H < 6.5 mag) observable with MIRC-X. We observed 29 O-type stars, including two systems in average atmospheric conditions around a magnitude of H = 7.5 mag. We systematically reduced the obtained data with the public reduction pipeline of the instrument. We analyzed the reduced data using the dedicated python software CANDID to detect companions. Results . Out of these 29 systems, we resolved 19 companions in 17 different systems with angular separations between ~0.5 and 50 mas. This results in a multiplicity fraction ƒ m = 17/29 = 0.59 ± 0.09, and an average number of companions ƒ c = 19/29 = 0.66 ± 0.13. Those results are in agreement with the results of the SMASH+ survey in the Southern Hemisphere. Thirteen of these companions have been resolved for the first time, including the companion responsible for the nonthermal emission in Cyg OB2-5 A and the confirmation of the candidate companion of HD 47129 suggested by SMASH+. Conclusions . A large survey on more than 120 northern O-type stars ( H < 7.5) is possible with MIRC-X and will be fruitful.more » « less
-
Context. As primary anchors of the distance scale, Cepheid stars play a crucial role in our understanding of the distance scale of the Universe because of their period-luminosity relation. Determining precise and consistent parameters (radius, temperature, color excess, and projection factor) of Cepheid pulsating stars is therefore very important. Aims. With the high-precision parallaxes delivered by the early third Gaia data release (EDR3), we aim to derive various parameters of Cepheid stars in order to calibrate the period-luminosity and period-radius relations and to investigate the relation of period to p -factor. Methods. We applied an implementation of the parallax-of-pulsation method through the algorithm called spectro-photo-interferometry of pulsating stars (SPIPS), which combines all types of available data for a variable star (multiband and multicolor photometry, radial velocity, effective temperature, and interferometry measurements) in a global modeling of its pulsation. Results. We present the SPIPS modeling of a sample of 63 Galactic Cepheids. Adopting Gaia EDR3 parallaxes as an input associated with the best available dataset, we derive consistent values of parameters for these stars such as the radius, multiband apparent magnitudes, effective temperatures, color excesses, period changes, Fourier parameters, and the projection factor. Conclusions. Using the best set of data and the most precise distances for Milky Way Cepheids, we derive new calibrations of the period-luminosity and period-radius relations: M K S = −5.529 ±0.015 − 3.141 ±0.050 (log P − 0.9) and log R = 1.763 ±0.003 + 0.653 ±0.012 (log P − 0.9). After investigating the dependences of the projection factor on the parameters of the stars, we find a high dispersion of its values and no evidence of its correlation with the period or with any other parameters such as radial velocity, temperature, or metallicity. Statistically, the p -factor has an average value of p = 1.26 ± 0.07, but with an unsatisfactory agreement ( σ = 0.15). In absence of any clear correlation between the p -factor and other quantities, the best agreement is obtained under the assumption that the p -factor can take any value in a band with a width of 0.15. This result highlights the need for a further examination of the physics behind the p -factor.more » « less
-
Context. A low-mass companion potentially in the brown dwarf mass regime was discovered on a ~12 yr orbit (~5.5 au) around HD 167665 using radial velocity (RV) monitoring. Joint RV–astrometry analyses confirmed that HD 167665B is a brown dwarf with precisions on the measured mass of ~4–9%. Brown dwarf companions with measured mass and luminosity are valuable for testing formation and evolutionary models. However, its atmospheric properties and luminosity are still unconstrained, preventing detailed tests of evolutionary models. Aims. We further characterize the HD 167665 system by measuring the luminosity and refining the mass of its companion and reassessing the stellar age. Methods. We present new high-contrast imaging data of the star and of its close-in environment from SPHERE and GRAVITY, which we combined with RV data from CORALIE and HIRES and astrometry from HIPPARCOSandGaia. Results. The analysis of the host star properties indicates an age of 6.20 ± 1.13 Gyr. GRAVITY reveals a point source near the position predicted from a joint fit of RV data and HIPPARCOS–Gaiaproper motion anomalies. Subsequent SPHERE imaging confirms the detection and reveals a faint point source of contrast of ∆H2= 10.95 ± 0.33 mag at a projected angular separation of ~180 mas. A joint fit of the high-contrast imaging, RV, and HIPPARCOSintermediate astrometric data together with theGaiaastrometric parameters constrains the mass of HD 167665B to ~1.2%, 60.3 ± 0.7MJ. The SPHERE colors and spectrum point to an early or mid-T brown dwarf of spectral type T4−2+1. Fitting the SPHERE spectrophotometry and GRAVITY spectrum with synthetic spectra suggests an effective temperature of ~1000–1150 K, a surface gravity of ~5.0–5.4 dex, and a bolometric luminosity log(L/L⊙)=−4.892−0.028+0.024dex. The mass, luminosity, and age of the companion can only be reproduced within 3σby the hybrid cloudy evolutionary models of Saumon & Marley (2008, ApJ, 689, 1327), whereas cloudless evolutionary models underpredict its luminosity.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Context. The surface brightness – color relationship (SBCR) is a poweful tool for determining the angular diameter of stars from photometry. It was for instance used to derive the distance of eclipsing binaries in the Large Magellanic Cloud (LMC), which led to its distance determination with an accuracy of 1%. Aims. We calibrate the SBCR for red giant stars in the 2.1 ≤ V − K ≤ 2.5 color range using homogeneous VEGA/CHARA interferometric data secured in the visible domain, and compare it to the relation based on infrared interferometric observations, which were used to derive the distance to the LMC. Methods. Observations of eight G–K giants were obtained with the VEGA/CHARA instrument. The derived limb-darkened angular diameters were combined with a homogeneous set of infrared magnitudes in order to constrain the SBCR. Results. The average precision we obtain on the limb-darkened angular diameters of the eight stars in our sample is 2.4%. For the four stars in common observed by both VEGA/CHARA and PIONIER/VLTI, we find a 1 σ agreement for the angular diameters. The SBCR we obtain in the visible has a dispersion of 0.04 magnitude and is consistent with the one derived in the infrared (0.018 magnitude). Conclusions. The consistency of the infrared and visible angular diameters and SBCR reinforces the result of 1% precision and accuracy recently achieved on the distance of the LMC using the eclipsing-binary technique. It also indicates that it is possible to combine interferometric observations at different wavelengths when the SBCR is calibrated.more » « less
-
Abstract Tight relationships exist in the local Universe between the central stellar properties of galaxies and the mass of their supermassive black hole (SMBH)1–3. These suggest that galaxies and black holes co-evolve, with the main regulation mechanism being energetic feedback from accretion onto the black hole during its quasar phase4–6. A crucial question is how the relationship between black holes and galaxies evolves with time; a key epoch to examine this relationship is at the peaks of star formation and black hole growth 8–12 billion years ago (redshifts 1–3)7. Here we report a dynamical measurement of the mass of the black hole in a luminous quasar at a redshift of 2, with a look back in time of 11 billion years, by spatially resolving the broad-line region (BLR). We detect a 40-μas (0.31-pc) spatial offset between the red and blue photocentres of the Hα line that traces the velocity gradient of a rotating BLR. The flux and differential phase spectra are well reproduced by a thick, moderately inclined disk of gas clouds within the sphere of influence of a central black hole with a mass of 3.2 × 108 solar masses. Molecular gas data reveal a dynamical mass for the host galaxy of 6 × 1011 solar masses, which indicates an undermassive black hole accreting at a super-Eddington rate. This suggests a host galaxy that grew faster than the SMBH, indicating a delay between galaxy and black hole formation for some systems.more » « less
An official website of the United States government

Full Text Available