skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ma, Lisa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We used seismic refraction to image the P‐wave velocity structure of a shale watershed experiencing regional compression in the Valley and Ridge Province (USA). From estimates showing strong compressional stress, we expected the depth to unweathered bedrock to mirror the hill‐valley‐hill topography (“bowtie pattern”) by analogy to seismic velocity patterns in crystalline bedrock in the North American Piedmont that also experience compression. Previous researchers used failure potentials calculated for strong compression in the Piedmont to suggest fractures are open deeper under hills than valleys to explain the “bowtie” pattern. Seismic images of the shale watershed, however, show little evidence of such a “bowtie.” Instead, they are consistent with weak (not strong) compression. This contradiction could be explained by the greater importance of infiltration‐driven weathering than fracturing in determining seismic velocities in shale compared to crystalline bedrock, or to local perturbations of the regional stress field due to lithology or structures. 
    more » « less