skip to main content

Search for: All records

Creators/Authors contains: "Ma, Qing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Li‐rich disordered rocksalt (DRS) oxyfluorides have emerged as promising high‐energy cathode materials for lithium‐ion batteries. While a high level of fluorination in DRS materials offers performance advantages, it can only be achieved via mechanochemical synthesis, which poses challenges of reproducibility and scalability. The definition of relationships between fluorination and structural stability is required to devise alternative methods that overcome these challenges. In this study, the thermal evolution of three highly fluorinated phases, Li2TMO2F (TM = Mn, Co, and Ni), is investigated in an inert atmosphere. Diffraction and spectroscopic techniques are utilized to examine their electronic and chemical states up until conditions of decomposition. The analysis reveals that the materials phase‐separate above 400 °C, at most. It is also observed that heat‐treated DRS materials exhibit intricate changes in the local coordination of the metals, including their spin, and ordering compared to the pristine states. The changes upon annealing are accompanied by a modulation of the voltage profile, including reduced hysteresis, when used as electrodes. These results provide an in‐depth understanding of the fundamental crystal chemistry of DRS oxyfluorides in view of their promising role as the next generation of Li‐ion cathodes.

    more » « less
  2. Abstract

    Polyolefins comprise a major fraction of single-use plastics, yet their catalytic deconstruction/recycling has proven challenging due to their inert saturated hydrocarbon connectivities. Here a very electrophilic, formally cationic earth-abundant single-site organozirconium catalyst chemisorbed on a highly Brønsted acidic sulfated alumina support and characterized by a broad array of experimental and theoretical techniques, is shown to mediate the rapid hydrogenolytic cleavage of molecular and macromolecular saturated hydrocarbons under mild conditions, with catalytic onset as low as 90 °C/0.5 atm H2with 0.02 mol% catalyst loading. For polyethylene, quantitative hydrogenolysis to light hydrocarbons proceeds within 48 min with an activity of > 4000 mol(CH2units)·mol(Zr)−1·h−1at 200 °C/2 atm H2pressure. Under similar solventless conditions, polyethylene-co−1-octene, isotactic polypropylene, and a post-consumer food container cap are rapidly hydrogenolyzed to low molecular mass hydrocarbons. Regarding mechanism, theory and experiment identify a turnover-limiting C-C scission pathway involvingß-alkyl transfer rather than the more common σ-bond metathesis.

    more » « less
  3. Recent work has demonstrated a low-temperature route to fabricating mixed ionic/electronic conducting (MIEC) thin films with enhanced oxygen exchange kinetics by crystallizing amorphous-grown thin films under mild temperatures, eluding conditions for deleterious A-site cation surface segregation. Yet, the complex, multiscale chemical and structural changes during MIEC crystallization and their implications for the electrical properties remain relatively unexplored. In this work, micro-structural and atomic-scale structural and chemical changes in crystallizing SrTi 0.65 Fe 0.35 O 3− δ thin films on insulating (0001)-oriented Al 2 O 3 substrates are observed and correlated to changes in the in-plane electrical conductivity, measured in situ by ac impedance spectroscopy. Synchrotron X-ray absorption spectroscopy at the Fe and Ti K-edges gives direct evidence of oxidation occurring with the onset of crystallization and insight into the atomic-scale structural changes driven by the chemical changes. The observed oxidation, increase in B-site polyhedra symmetry, and alignment of neighboring B-site cation coordination units demonstrate increases in both hole concentration and mobility, thus underpinning the measured increase of in-plane conductivity by over two orders of magnitude during crystallization. High resolution transmission electron microscopy and spectroscopy of films at various degrees of crystallinity reveal compositional uniformity with extensive nano-porosity in the crystallized films, consistent with solid phase contraction expected from both oxidation and crystallization. We suggest that this chemo-mechanically driven dynamic nano-structuring is an additional contributor to the observed electrical behavior. By the point that the films become ∼60% crystalline (according to X-ray diffraction), the conductivity reaches the value of dense, fully crystalline films. Given the resulting high electronic conductivity, this low-temperature processing route leading to semi-crystalline hierarchical films exhibits promise for developing high performance MIECs for low-to-intermediate temperature applications. 
    more » « less
  4. null (Ed.)
    Despite the immense importance of ceria–zirconia solid solutions in heterogeneous catalysis, and the growing consensus that catalytic activity correlates with the concentration of reduced Ce 3+ species and accompanying oxygen vacancies, the extent of reduction at the surfaces of these materials, where catalysis occurs, is unknown. Using angle-resolved X-ray Absorption Near Edge Spectroscopy (XANES), we quantify under technologically relevant conditions the Ce 3+ concentration in the surface (2–3 nm) and bulk regions of ceria–zirconia films grown on single crystal yttria-stabilized zirconia, YSZ (001). In all circumstances, we observe substantial Ce 3+ enrichment at the surface relative to the bulk. Surprisingly, the degree of enhancement is highest in the absence of Zr. This behavior stands in direct contrast to that of the bulk in which the Ce 3+ concentration monotonically increases with increasing Zr content. These results suggest that while Zr enhances the oxygen storage capacity in ceria, undoped ceria may have higher surface catalytic activity. They further urge caution in the use of bulk properties as surrogate descriptors for surface characteristics and hence catalytic activity. 
    more » « less
  5. null (Ed.)
  6. The fish intestine is an important barrier for environmental toxicants, including metals and metal nanoparticles. Tracking chemical transformation at the interface between the intestinal epithelium and the intestinal lumen can inform us about chemicals' bio-reactivity and toxicity but is challenging due to the lack of appropriate models. To allow for such investigations, a model of the fish intestine derived from rainbow trout ( Oncorhynchus mykiss ), the RTgutGC cell line, was used. Cells were exposed to silver nitrate (AgNO 3 ) or citrate coated silver nanoparticles (cit-AgNPs) in Leibovitz's L-15 medium without amino acids and vitamins (L-15/ex), which allowed the determination of the extracellular silver species using a chemical equilibrium model. X-ray absorption spectroscopy (XAS) was used to track intracellular silver speciation. Cellular toxicity, silver accumulation, and metallothionein (MT) mRNA levels were also measured. Cells accumulated the same concentrations of silver when exposed to equimolar amounts ( i.e. 1, 5 and 10 μM) of AgNO 3 or cit-AgNPs. However, AgNO 3 was shown to be more toxic than cit-AgNPs. Intracellular silver speciation changed over time in both exposure series. After 1 hour, intracellular silver speciation was dominated by chloride complexation in both exposures. After 24 and 72 hours of exposure to cit-AgNPs, ∼7% of silver was complexed to cysteine, whereas the remaining silver was AgNPs. In cells exposed to AgNO 3 for 72 hours, 97% of Ag was complexed to cysteine. A significant increase, compared to controls, in metallothionein mRNA levels at 24 and 72 hours of exposure to AgNO 3 and cit-AgNPs can explain the formation of Ag–cysteine complexes. In summary, these data show that silver chloride species are bioavailable and that complexation to cysteine scavenges intracellular dissolved silver ions, thus preventing toxicity. Silver nanoparticles present a similar but attenuated toxic response to AgNO 3 . Thus, at least in acute exposures, existing risk assessment for dissolved silver species could be protective for nanosilver. 
    more » « less