Abstract In organic mixed ionic–electronic conductors (OMIECs), it is critical to understand the motion of ions in the electrolyte and OMIEC. Generally, the focus is on the movement of net charge during gating, and the motion of neutral anion–cation pairs is seldom considered. Uptake of mobile ion pairs by the semiconductor before electrochemical gating (passive uptake) can be advantageous as this can improve device speed, and both ions can participate in charge compensation during gating. Here, such passive ion pair uptake in high‐speed solid‐state devices is demonstrated using an ion gel electrolyte. This is compared to a polymerized ionic liquid (PIL) electrolyte to understand how ion pair uptake affects device characteristics. Using X‐ray photoelectron spectroscopy, the passive uptake of ion pairs from the ion gel into the OMIEC is detected, whereas no uptake is observed with a PIL electrolyte. This is corroborated by X‐ray scattering, which reveals morphological changes to the OMIEC from the uptake of ion pairs. With in situ Raman, a reorganization of both anions and cations is then observed during gating. Finally, the speed and retention of OMIEC‐based neuromorphic devices are tuned by controlling the freedom of charge motion in the electrolyte.
more »
« less
Direct quantification of ion composition and mobility in organic mixed ionic-electronic conductors
Ion transport in organic mixed ionic-electronic conductors (OMIECs) is crucial due to its direct impact on device response time and operating mechanisms but is often assessed indirectly or necessitates extra assumptions. Operando x-ray fluorescence (XRF) is a powerful, direct probe for elemental characterization of bulk OMIECs and was used to directly quantify ion composition and mobility in a model OMIEC, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS), during device operation. The first cycle revealed slow electrowetting and cation-proton exchange. Subsequent cycles showed rapid response with minor cation fluctuation (~5%). Comparison with optical-tracked electrochromic fronts revealed mesoscale structure–dependent proton transport. The calculated effective ion mobility demonstrated thickness-dependent behavior, emphasizing an interfacial ion transport pathway with a higher mobile ion density. The decoupling of interfacial effects on bulk ion mobility and the decoupling of cation and proton migration elucidate ion transport in conventional and emerging OMIEC-based devices and has broader implications for other ionic conductors writ large.
more »
« less
- PAR ID:
- 10548138
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 17
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Organic mixed ionic‐electronic conductors (OMIECs) have garnered significant attention due to their capacity to transport both ions and electrons, making them ideal for applications in energy storage, neuromorphics, and bioelectronics. However, charge compensation mechanisms during the polymer redox process remain poorly understood, and are often oversimplified as single‐ion injection with little attention to counterion effects. To advance understanding and design strategies toward next‐generation OMIEC systems, a series of p‐channel carboxylated mixed conductors is investigated. Varying side‐chain functionality, distinctive swelling character is uncovered during electrochemical doping/dedoping with model chao‐/kosmotropic electrolytes. Carboxylic acid functionalized polymers demonstrate strong deswelling and mass reduction during doping, indicating cation expulsion, while ethoxycarbonyl counterparts exhibit prominent mass increase, pointing to an anion‐driven doping mechanism. By employingoperandograzing incidence X‐ray fluorescence (GIXRF), it is revealed that the carboxyl functionalized polymer engages in robust cation interaction, whereas ester functionalization shifts the mechanism towards no cation involvement. It is demonstrated that cations are pivotal in mitigating swelling by counterbalancing anions, enabling efficient anion uptake without compromising performance. These findings underscore the transformative influence of functionality‐driven factors and side‐chain chemistry in governing ion dynamics and conduction, providing new frameworks for designing OMIECs with enhanced performance and reduced swelling.more » « less
-
Abstract Organic mixed ionic‐electronic conductors (OMIECs) have emerged as promising materials for a wide range of next‐generation technologies, including bioelectronics and neuromorphic computing. The performance of these materials depends on the transport of ions through the polycrystalline polymer matrix as well as how the distribution of ions and polarons in crystalline and amorphous regions impacts electronic transport. However, it is often challenging to distinguish whether ions enter crystalline or amorphous regions. In this work, steady‐state and time‐resolved photoluminescence (PL) spectroelectrochemistry is used to probe initial ion insertion in crystalline and amorphous regions of the OMIEC material poly(3‐[2‐[2‐(2‐methoxyethoxy)ethoxy]ethyl]thiophene ‐2,5‐diyl) (P3MEEET) as a function of applied voltage. It is found that PL spectroelectrochemistry reports on the initial stages of electrochemical doping through the quenching of PL emission. By distinguishing between amorphous and crystalline contributions to the PL spectrum, ion insertion in crystalline and amorphous regions as a function of voltage is tracked. It is found that PL spectroelectrochemistry is much more sensitive to the initial injection of ions than complementary methods, highlighting its potential as a sensitive tool for interrogating ion injection in OMIECs.more » « less
-
Bioelectronics focuses on the establishment of the connection between the ion-driven biosystems and readable electronic signals. Organic electrochemical transistors (OECTs) offer a viable solution for this task. Organic mixed ionic/electronic conductors (OMIECs) rest at the heart of OECTs. The balance between the ionic and electronic conductivities of OMIECs is closely connected to the OECT device performance. While modification of the OMIECs’ electronic properties is largely related to the development of conjugated scaffolds, properties such as ion permeability, solubility, flexibility, morphology, and sensitivity can be altered by side chain moieties. In this review, we uncover the influence of side chain molecular design on the properties and performance of OECTs. We summarise current understanding of OECT performance and focus specifically on the knowledge of ionic–electronic coupling, shedding light on the significance of side chain development of OMIECs. We show how the versatile synthetic toolbox of side chains can be successfully employed to tune OECT parameters via controlling the material properties. As the field continues to mature, more detailed investigations into the crucial role side chain engineering plays on the resultant OMIEC properties will allow for side chain alternatives to be developed and will ultimately lead to further enhancements within the field of OECT channel materials.more » « less
-
Abstract Organic mixed ionic–electronic conductors (OMIECs) have varied performance requirements across a diverse application space. Chemically doping the OMIEC can be a simple, low‐cost approach for adapting performance metrics. However, complex challenges, such as identifying new dopant materials and elucidating design rules, inhibit its realization. Here, these challenges are approached by introducing a new n‐dopant, tetrabutylammonium hydroxide (TBA‐OH), and identifying a new design consideration underpinning its success. TBA‐OH behaves as both a chemical n‐dopant and morphology additive in donor acceptor co‐polymer naphthodithiophene diimide‐based polymer, which serves as an electron transporting material in organic electrochemical transistors (OECTs). The combined effects enhance OECT transconductance, charge carrier mobility, and volumetric capacitance, representative of the key metrics underpinning all OMIEC applications. Additionally, when the TBA+counterion adopts an “edge‐on” location relative to the polymer backbone, Coulombic interaction between the counterion and polaron is reduced, and polaron delocalization increases. This is the first time such mechanisms are identified in doped‐OECTs and doped‐OMIECs. The work herein therefore takes the first steps toward developing the design guidelines needed to realize chemical doping as a generic strategy for tailoring performance metrics in OECTs and OMIECs.more » « less