Transitions in the heterogamety of sex chromosomes (e.g., XY to ZW or vice versa) fundamentally alter the genetic basis of sex determination, however the details of these changes have been studied in only a few cases. In an XY to ZW transition, the X is likely to give rise to the W because they both carry feminizing genes and the X is expected to harbour less genetic load than the Y. Here, using a new reference genome for
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Salix exigua , we trace the X, Y, Z, and W sex determination regions during the homologous transition from an XY system to a ZW system in willow (Salix). We show that both the W and the Z arose from the Y chromosome. We find that the new Z chromosome shares multiple homologous putative masculinizing factors with the ancestral Y, whereas the new W lost these masculinizing factors and gained feminizing factors. The origination of both the W and Z from the Y was permitted by an unexpectedly low genetic load on the Y and this indicates that the origins of sex chromosomes during homologous transitions may be more flexible than previously considered. -
Abstract Despite the economic, ecological, and scientific importance of the genera Salix L. (willows) and Populus L. (poplars, cottonwoods, and aspens) Salicaceae, we know little about the sources of differences in species diversity between the genera and of the phylogenetic conflict that often confounds estimating phylogenetic trees. Salix subgenera and sections, in particular, have been difficult to classify, with one recent attempt termed a “spectacular failure” due to a speculated radiation of the subgenera Vetrix and Chamaetia. Here, we use targeted sequence capture to understand the evolutionary history of this portion of the Salicaceae plant family. Our phylogenetic hypothesis was based on 787 gene regions and identified extensive phylogenetic conflict among genes. Our analysis supported some previously described subgeneric relationships and confirmed the polyphyly of others. Using an fbranch analysis, we identified several cases of hybridization in deep branches of the phylogeny, which likely contributed to discordance among gene trees. In addition, we identified a rapid increase in diversification rate near the origination of the Vetrix–Chamaetia clade in Salix. This region of the tree coincided with several nodes that lacked strong statistical support, indicating a possible increase in incomplete lineage sorting due to rapid diversification. The extraordinary level of both recent and ancient hybridization in both Salix and Populus have played important roles in the diversification and diversity in these two genera. [ASTRAL species tree; concatenated tree; hybridization; fbranch test; Salicaceae; sequence capture.]
-
Abstract Self‐assembled materials with complex nanoscale and mesoscale architecture attract considerable attention in energy and sustainability technologies. Their high performance can be attributed to high surface area, quantum effects, and hierarchical organization. Delineation of these contributions is, however, difficult because complex materials display stochastic structural patterns combining both order and disorder, which is difficult to be consistently reproduced yet being important for materials' functionality. Their compositional variability make systematic studies even harder. Here, a model system of FeSe2 “hedgehog” particles (HPs) was selected to gain insight into the mechanisms of charge storage n complex nanostructured materials common for batteries and supercapacitors. Specifically, HPs represent self‐assembled biomimetic nanomaterials with a medium level of complexity; they display an organizational pattern of spiky colloids with considerable disorder yet non‐random; this patternt is consistently reproduced from particle to particle. . It was found that HPs can accommodate ≈70× greater charge density than spheroidal nano‐ and microparticles. Besides expanded surface area, the enhanced charge storage capacity was enabled by improved hole transport and reversible atomic conformations of FeSe2layers in the blade‐like spikes associated with the rotatory motion of the Se atoms around Fe center. The dispersibility of HPs also enables their easy integration into energy storage devices. HPs quadruple stored electrochemical energy and double the storage modulus of structural supercapacitors.
-
Abstract Atmospheric NO2is of great concern due to its adverse effects on human health and the environment, motivating research on NO2detection and remediation. Existing low-cost room-temperature NO2sensors often suffer from low sensitivity at the ppb level or long recovery times, reflecting the trade-off between sensor response and recovery time. Here, we report an atomically dispersed metal ion strategy to address it. We discover that bimetallic PbCdSe quantum dot (QD) gels containing atomically dispersed Pb ionic sites achieve the optimal combination of strong sensor response and fast recovery, leading to a high-performance room-temperature p-type semiconductor NO2sensor as characterized by a combination of ultra–low limit of detection, high sensitivity and stability, fast response and recovery. With the help of theoretical calculations, we reveal the high performance of the PbCdSe QD gel arises from the unique tuning effects of Pb ionic sites on NO2binding at their neighboring Cd sites.
-
null (Ed.)Scanning ion conductance microscopy (SICM) offers the ability to obtain nanoscale resolution images of the membranes of living cells. Here, we show that a dual-barrel nanopipette probe based potentiometric SICM (P-SICM) can simultaneously map the topography and surface potential of soft, rough and heterogeneously charged surfaces under physiological conditions. This technique was validated and tested by systematic studies on model samples, and the finite element method (FEM) based simulations confirmed its surface potential sensing capability. Using the P-SICM method, we compared both the topography and extracellular potential distributions of the membranes of normal (Mela-A) and cancerous (B16) skin cells. We further monitored the structural and electrical changes of the membranes of both types of cells after exposing them to the elevated potassium ion concentration in extracellular solution, known to depolarize and damage the cell. From surface potential imaging, we revealed the dynamic appearance of heterogeneity of the surface potential of the individual cell membrane. This P-SICM method provides new opportunities to study the structural and electrical properties of cell membrane at the nanoscale.more » « less
-
Reversible intermolecular interactions play critical roles in nature. However, it is still challenging to monitor the dynamic intermolecular interactions at the single-molecule level in aqueous solution. Here, we studied the dynamic changes of intermolecular interactions at the carboxyl/carboxyl interfaces between a pair of molecules trapped in a plasmonic nanocavity formed between a gold nanoparticle (GNP) and a gold nanoelectrode (GNE). The development of intermolecular interactions, including the appearance of hydrogen bonds (h-bonds), during and after single GNP collision events on the GNE, was monitored by time-resolved surface-enhanced Raman spectroscopy at a tens of milliseconds time resolution. Spectral fingerprints of the carboxyl group corresponding to non-specific intermolecular interactions and h-bonds are identified. Furthermore, we demonstrated that the strength of intermolecular interaction could be mechanically modulated by changing the applied bias at the GNE, which resulted in small and controllable changes in the nanogap distance. Unlike non-specific intermolecular interactions, the intermolecular h-bonds can only be formed stochastically and are more sensitive to the gap distance modulation. This report demonstrates a new approach to modulate and probe intermolecular interactions within nanogaps.more » « less