skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Ma, Weiming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Atmospheric rivers (ARs), intrusions of warm and moist air, can effectively drive weather extremes over the Arctic and trigger subsequent impact on sea ice and climate. What controls the observed multi-decadal Arctic AR trends remains unclear. Here, using multiple sources of observations and model experiments, we find that, contrary to the uniform positive trend in climate simulations, the observed Arctic AR frequency increases by twice as much over the Atlantic sector compared to the Pacific sector in 1981-2021. This discrepancy can be reconciled by the observed positive-to-negative phase shift of Interdecadal Pacific Oscillation (IPO) and the negative-to-positive phase shift of Atlantic Multidecadal Oscillation (AMO), which increase and reduce Arctic ARs over the Atlantic and Pacific sectors, respectively. Removing the influence of the IPO and AMO can reduce the projection uncertainties in near-future Arctic AR trends by about 24%, which is important for constraining projection of Arctic warming and the timing of an ice-free Arctic.

    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Interannual variability of the winter AR activities over the Northern hemisphere is investigated. The leading modes of AR variability over the North Pacific and North Atlantic are first identified and characterized. Over the Pacific, the first mode is characterized by a dipole structure with enhanced AR frequency along the AR peak region at about 30° N and reduced AR frequency further north. The second mode exhibits a tri-pole structure with a narrow band of positive AR anomalies at about 30° N and sandwiched by negative anomalies. Over the Atlantic, the first mode exhibits an equatorward shift of the ARs with positive anomalies and negative anomalies located on the equatorward and poleward side of the AR peak region at about 40° N , respectively. The second mode is associated with the strengthening and eastward extension of the AR peak region which is sandwiched by negative anomalies. A large ensemble of atmospheric global climate models from the Coupled Model Intercomparison Project phase 6 (CMIP6), which shows high skills in simulating these modes, is then used to quantify the roles of sea surface temperature (SST) forcing versus internal atmospheric variability in driving the formation of these modes. Results show that SST forcing explains about half of the variance for the Pacific leading modes, while that number drops to about a quarter for the Atlantic leading modes, suggesting higher predictability for the Pacific AR variability. Additional ensemble driven only by observed tropical SST is further utilized to demonstrate the more important role that tropical SST plays in controlling the Pacific AR variability while both tropical and extratropical SST exert comparable influences on the Atlantic AR variability. 
    more » « less
  3. Abstract

    Extreme stratospheric wave activity has been suggested to be connected to surface temperature anomalies, but some key processes are not well understood. Using observations, we show that the stratospheric events featuring weaker‐than‐normal wave activity are associated with increased North American (NA) cold extreme risks before and near the event onset, accompanied by less frequent atmospheric river (AR) events on the west coast of the United States. Strong stratospheric wave events, on the other hand, exhibit a tropospheric weather regime transition. They are preceded by NA warm anomalies and increased AR frequency over the west coast, followed by increased risks of NA cold extremes and north‐shifted ARs over the Atlantic. Moreover, these links between the stratosphere and troposphere are attributed to the vertical structure of wave coupling. Weak wave events show a wave structure of westward tilt with increasing altitudes, while strong wave events feature a shift from westward tilt to eastward tilt during their life cycle. This wave phase shift indicates vertical wave coupling and likely regional planetary wave reflection. Further examinations of CMIP6 models show that models with a degraded representation of stratospheric wave structure exhibit biases in the troposphere during strong wave events. Specifically, models with a stratospheric ridge weaker than the reanalysis exhibit a weaker tropospheric signal. Our findings suggest that the vertical coupling of extreme stratospheric wave activity should be evaluated in the model representation of stratosphere‐troposphere coupling.

    more » « less
  4. Abstract

    Atmospheric rivers (ARs) are filaments of enhanced horizontal moisture transport in the atmosphere. Due to their prominent role in the meridional moisture transport and regional weather extremes, ARs have been studied extensively in recent years. Yet, the representations of ARs and their associated precipitation on a global scale remains largely unknown. In this study, we developed an AR detection algorithm specifically for satellite observations using moisture and the geostrophic winds derived from 3D geopotential height field from the combined retrievals of the Atmospheric Infrared Sounder and the Advanced Microwave Sounding Unit on NASA Aqua satellite. This algorithm enables us to develop the first global AR catalog based solely on satellite observations. The satellite‐based AR catalog is then combined with the satellite‐based precipitation (Integrated Muti‐SatellitE Retrievals for GPM) to evaluate the representations of ARs and AR‐induced precipitation in reanalysis products. Our results show that the spreads in AR frequency and AR length distribution are generally small across data sets, while the spread in AR width is relatively larger. Reanalysis products are found to consistently underestimate both mean and extreme AR‐related precipitation. However, all reanalyses tend to precipitate too often under AR conditions, especially over low latitude regions. This finding is consistent with the “drizzling” bias which has plagued generations of climate models. Overall, the findings of this study can help to improve the representations of ARs and associated precipitation in reanalyses and climate models.

    more » « less
  5. null (Ed.)
    Abstract Atmospheric rivers (ARs), narrow intense moisture transport, account for much of the poleward moisture transport in midlatitudes. While studies have characterized AR features and the associated hydrological impacts in a warming climate in observations and comprehensive climate models, the fundamental dynamics for changes in AR statistics (e.g., frequency, length, width) are not well understood. Here we investigate AR response to global warming with a combination of idealized and comprehensive climate models. To that end, we developed an idealized atmospheric GCM with Earth-like global circulation and hydrological cycle, in which water vapor and clouds are modeled as passive tracers with simple cloud microphysics and precipitation processes. Despite the simplicity of model physics, it reasonably reproduces observed dynamical structures for individual ARs, statistical characteristics of ARs, and spatial distributions of AR climatology. Under climate warming, the idealized model produces robust AR changes similar to CESM large ensemble simulations under RCP8.5, including AR size expansion, intensified landfall moisture transport, and an increased AR frequency, corroborating previously reported AR changes under global warming by climate models. In addition, the latitude of AR frequency maximum shifts poleward with climate warming. Further analysis suggests the thermodynamic effect (i.e., an increase in water vapor) dominates the AR statistics and frequency changes while both the dynamic and thermodynamic effects contribute to the AR poleward shift. These results demonstrate that AR changes in a warming climate can be understood as passive water vapor and cloud tracers regulated by large-scale atmospheric circulation, whereas convection and latent heat feedback are of secondary importance. 
    more » « less
  6. Abstract

    The atmospheric river (AR) response to Arctic sea ice loss in the Northern hemisphere winter is investigated using simulations from the Polar Amplification Model Intercomparison Project. Results have shown that the midlatitude responses are dominated by dynamic effects. Poleward of around, the dynamic and thermodynamic effects cancel each other, resulting in relatively small responses. The response uncertainty can be characterized by leading uncertainty modes, with the responses over the Pacific and Atlantic projecting onto the northeastward extension and equatorward shift mode, respectively. In addition, the responses seem to be mean state‐dependent: under the same forcing, models with more poleward‐located climatological ARs tend to show stronger equatorward shifts over the Atlantic; over the Pacific, models with more westward‐located climatological AR core tend to show stronger northeastward extensions. These relationships highlight the importance of improving the AR climatology representation on reducing the response uncertainty to Arctic sea ice loss.

    more » « less
  7. Abstract

    The atmospheric river (AR) frequency trends over the Southern Hemisphere are investigated using three reanalyses and two Community Earth System Model (CESM) ensembles. The results show that AR frequency has been increasing over the Southern Ocean and decreasing over lower latitudes in the past four decades and that ARs have been shifting poleward. While the observed trends are mostly driven by the poleward shift of the westerly jet, fully coupled CESM experiments indicate anthropogenic forcing would result in positive AR frequency trends over the Southern Ocean due mostly to moisture changes. The difference between the observed trends and anthropogenically driven trends can be largely reconciled by the atmosphere‐only CESM simulations forced by observed sea surface temperatures: Sea surface temperature variability characteristic of the negative phase of the Interdecadal Pacific Oscillation strongly suppresses the moisture‐driven trends while enhances the circulation‐induced trends over the Southern Ocean, thus bringing the simulated trends into closer agreement with the observed trends.

    more » « less