Arctic warming has significant environmental and social impacts. Arctic long‐term warming trend is modulated by decadal‐to‐multidecadal variations. Improved understanding of how different external forcings and internal variability affect Arctic surface air temperature (SAT) is crucial for explaining and predicting Arctic climate changes. We analyze multiple observational data sets and large ensembles of climate model simulations to quantify the contributions of specific external forcings and various modes of internal variability to Arctic SAT changes during 1900–2021. We find that the long‐term trend and total variance in Arctic‐mean SAT since 1900 are largely forced responses, including warming due to greenhouse gases and natural forcings and cooling due to anthropogenic aerosols. In contrast, internal variability dominates the early 20th century Arctic warming and mid‐20th century Arctic cooling. Internal variability also explains ∼40% of the recent Arctic warming from 1979 to 2021. Unforced changes in Arctic SAT are largely attributed to two leading modes. The first is pan‐Arctic warming with stronger loading over the Eurasian sector, accounting for 70% of the unforced variance and closely related to the positive phase of the unforced Atlantic Multidecadal Oscillation (AMO). The second mode exhibits relatively weak warming averaged over the entire Arctic with warming over the North American‐Pacific sector and cooling over the Atlantic sector, explaining 10% of the unforced variance and likely caused by the positive phase of the unforced Interdecadal Pacific Oscillation (IPO). The AMO‐related changes dominate the unforced Arctic warming since 1979, while the IPO‐related changes contribute to the decadal SAT changes over the North American‐Pacific Arctic.
This content will become publicly available on December 1, 2025
Atmospheric rivers (ARs), intrusions of warm and moist air, can effectively drive weather extremes over the Arctic and trigger subsequent impact on sea ice and climate. What controls the observed multi-decadal Arctic AR trends remains unclear. Here, using multiple sources of observations and model experiments, we find that, contrary to the uniform positive trend in climate simulations, the observed Arctic AR frequency increases by twice as much over the Atlantic sector compared to the Pacific sector in 1981-2021. This discrepancy can be reconciled by the observed positive-to-negative phase shift of Interdecadal Pacific Oscillation (IPO) and the negative-to-positive phase shift of Atlantic Multidecadal Oscillation (AMO), which increase and reduce Arctic ARs over the Atlantic and Pacific sectors, respectively. Removing the influence of the IPO and AMO can reduce the projection uncertainties in near-future Arctic AR trends by about 24%, which is important for constraining projection of Arctic warming and the timing of an ice-free Arctic.
more » « less- PAR ID:
- 10496984
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Recent concurrent shifts of the East Asian polar-front jet (EAPJ) and the East Asian subtropical jet (EASJ) in the boreal winter have raised concerns, since they could result in severe weather events over East Asia. However, the possible mechanisms are not fully understood. In this study, the roles of the interdecadal Pacific oscillation (IPO) and the Atlantic multidecadal oscillation (AMO) are investigated by analyzing reanalysis data and model simulations. Results show that combinations of opposite phases of the IPO and AMO can result in significant shifts of the two jets during 1920–2014. This relationship is particularly evident during 1999–2014 and 1979–98 in the reanalysis data. A combination of a negative phase of the IPO (−IPO) and a positive phase of the AMO (+AMO) since the late 1990s has enhanced the meridional temperature gradient and the Eady growth rate and thus westerlies over the region between the two jets, but weakened them to the south and north of the region, thereby contributing to the equatorward and poleward shifts of the EAPJ and EASJ, respectively. Atmospheric model simulations are further used to investigate the relative contribution of −IPO and +AMO to the jet shifts. The model simulations show that the combination of −IPO and +AMO favors the recent jet changes more than the individual −IPO or +AMO. Under a concurrent −IPO and +AMO, the meridional eddy transport of zonal momentum and sensitive heat strengthens, and more mean available potential energy converts to the eddy available potential energy over the region between the two jets, which enhances westerly winds there.
-
Abstract The atmospheric river (AR) frequency trends over the Southern Hemisphere are investigated using three reanalyses and two Community Earth System Model (CESM) ensembles. The results show that AR frequency has been increasing over the Southern Ocean and decreasing over lower latitudes in the past four decades and that ARs have been shifting poleward. While the observed trends are mostly driven by the poleward shift of the westerly jet, fully coupled CESM experiments indicate anthropogenic forcing would result in positive AR frequency trends over the Southern Ocean due mostly to moisture changes. The difference between the observed trends and anthropogenically driven trends can be largely reconciled by the atmosphere‐only CESM simulations forced by observed sea surface temperatures: Sea surface temperature variability characteristic of the negative phase of the Interdecadal Pacific Oscillation strongly suppresses the moisture‐driven trends while enhances the circulation‐induced trends over the Southern Ocean, thus bringing the simulated trends into closer agreement with the observed trends.
-
Abstract Recent studies demonstrated the existence of a conspicuous atmospheric combination mode (C-mode) originating from nonlinear interactions between El Niño–Southern Oscillation (ENSO) and the Pacific warm pool annual cycle (AC). Here we find that the C-mode exhibits prominent decadal amplitude variations during the ENSO decaying boreal spring season. It is revealed that the Atlantic multidecadal oscillation (AMO) can largely explain this waxing and waning in amplitude. A robust positive correlation between ENSO and the C-mode is detected during a negative AMO phase but not during a positive phase. Similar results can also be found in the relationship of ENSO with 1) the western North Pacific (WNP) anticyclone and 2) spring precipitation over southern China, both of which are closely associated with the C-mode. We suggest that ENSO property changes due to an AMO modulation play a crucial role in determining these decadal shifts. During a positive AMO phase, ENSO events are distinctly weaker than those in an AMO negative phase. In addition, El Niño events concurrent with a positive AMO phase tend to exhibit a westward-shifted sea surface temperature (SST) anomaly pattern. These SST characteristics during the positive AMO phase are both not conducive to the development of the meridionally asymmetric C-mode atmospheric circulation pattern and thus reduce the ENSO/C-mode correlation on decadal time scales. These observations can be realistically reproduced by a coupled general circulation model (CGCM) experiment in which North Atlantic SSTs are nudged to reproduce a 50-yr sinusoidally varying AMO evolution. Our conclusion carries important implications for understanding seasonally modulated ENSO dynamics and multiscale climate impacts over East Asia.more » « less
-
The impacts of the interdecadal variability of the Pacific and the Atlantic Oceans on precipitation over the Central Andes during the austral summer (December-January-February, DJF) are investigated for the 1921–2010 period based on monthly gridded precipitation data and low-pass filtered time series of the Niño 4 index (IN4), the Niño 1 + 2 index with Niño 3.4 index removed (IN1+2 * ), Atlantic Multidecadal Oscillation (AMO), and Interdecadal Pacific Oscillation (IPO) indices, and the three first rotated principal components of the interdecadal component of the sea surface temperature (SST) anomalies over the Atlantic Ocean. A rotated empirical orthogonal function (REOF) analysis of precipitation in the Central Andes (10°S–30°S) yields two leading modes, RPC1 and RPC2, which represent 40.4% and 18.6% of the total variance, respectively. REOF1 features a precipitation dipole between the northern Bolivian and the Chilean Altiplano. REOF2 also features a precipitation dipole, with highest negative loading over the southern Peruvian Andes. The REOF1 positive phase is associated with moisture transport from the lowlands toward the Bolivian Altiplano, induced by upper-level easterly wind anomalies over the Central Andes. At the same time conditions tend to be dry over the southern Peruvian Andes. The positive phase of REOF2 is related to weakened moisture transport, induced by upper-level westerly wind anomalies over Peru. The IPO warm phase induces significant dry anomalies over the Bolivian Altiplano, albeit weaker than during the IN4 warm phase, via upper-level westerly wind anomalies over the Central Andes. No significant relationship was found between Central Andean precipitation and the AMO on interdecadal timescales.more » « less