skip to main content

Search for: All records

Creators/Authors contains: "Ma, Xin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent deep clustering algorithms take advantage of self-supervised learning and self-training techniques to map the original data into a latent space, where the data embedding and clustering assignment can be jointly optimized. However, as many recent datasets are enormous and noisy, getting a clear boundary between different clusters is challenging with existing methods that mainly focus on contracting similar samples together and overlooking samples near boundary of clusters in the latent space. In this regard, we propose an end-to-end deep clustering algorithm, i.e., Locally Normalized Soft Contrastive Clustering (LNSCC). It takes advantage of similarities among each sample’s local neighborhood and globally disconnected samples to leverage positiveness and negativeness of sample pairs in a contrastive way to separate different clusters. Experimental results on various datasets illustrate that our proposed approach achieves outstanding clustering performance over most of the state-of-the-art clustering methods for both image and non-image data even without convolution.
    Free, publicly-accessible full text available July 26, 2023
  2. Tremendous recent literature show that associations between different brain regions, i.e., brain connectivity, provide early symptoms of neurological disorders. Despite significant efforts made for graph neural network (GNN) techniques, their focus on graph nodes makes the state-of-the-art GNN methods not suitable for classifying brain connectivity as graphs where the objective is to characterize disease-relevant network dysfunction patterns on graph links. To address this issue, we propose Multi-resolution Edge Network (MENET) to detect disease-specific connectomic benchmarks with high discrimination power across diagnostic categories. The core of MENET is a novel graph edge-wise transform that we propose, which allows us to capture multi-resolution “connectomic” features. Using a rich set of the connectomic features, we devise a graph learning framework to jointly select discriminative edges and assign diagnostic labels for graphs. Experiments on two real datasets show that MENET accurately predicts diagnostic labels and identify brain connectivities highly associated with neurological disorders such as Alzheimer’s Disease and Attention-Deficit/Hyperactivity Disorder.