Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Heterogeneous systems are commonly used today to sustain the historic benefits we have achieved through technology scaling. 2.5D integration technology provides a cost-effective solution for designing heterogeneous systems. The traditional physical design of a 2.5D heterogeneous system closely packs the chiplets to minimize wirelength, but this leads to a thermally-inefficient design. We propose TAP-2.5D: the first open-source network routing and thermally-aware chiplet placement methodology for heterogeneous 2.5D systems. TAP-2.5D strategically inserts spacing between chiplets to jointly minimize the temperature and total wirelength, and in turn, increases the thermal design power envelope of the overall system. We present three case studies demonstrating the usage and efficacy of TAP-2.5D.more » « less
-
design, both inter- and intra-chiplet, impacts overall system performance as well as its manufacturing cost and thermal feasibility. This paper introduces a cross-layer methodology for designing networks in 2.5D systems. We optimize the network design and chiplet placement jointly across logical, physical, and circuit layers to achieve an energy-efficient network, while maximizing system performance, minimizing manufacturing cost, and adhering to thermal constraints. In the logical layer, our co-optimization considers eight different network topologies. In the physical layer, we consider routing, microbump assignment, and microbump pitch constraints to account for the extra costs associated with microbump utilization in the inter-chiplet communication. In the circuit layer, we consider both passive and active links with five different link types, including a gas station link design. Using our cross-layer methodology results in more accurate determination of (superior) inter-chiplet network and 2.5D system designs compared to prior methods. Compared to 2D systems, our approach achieves 29% better performance with the same manufacturing cost, or 25% lower cost with the same performance.more » « less