Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The quality of solar images plays an important role in the analysis of small events in solar physics. Therefore, the improvement of image resolution based on super-resolution (SR) reconstruction technology has aroused the interest of many researchers. In this paper, an improved conditional denoising diffusion probability model (ICDDPM) based on the Markov chain is proposed for the SR reconstruction of solar images. This method reconstructs high-resolution (HR) images from low-resolution images by learning a reverse process that adds noise to HR images. To verify the effectiveness of the method, images from the Goode Solar Telescope at the Big Bear Solar Observatory and the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory are used to train a network, and the spatial resolution of reconstructed images is 4 times that of the original HMI images. The experimental results show that the performance based on ICDDPM is better than the previous work in subject judgment and object evaluation indexes. The reconstructed images of this method have higher subjective vision quality and better consistency with the HMI images. And the structural similarity and rms index results are also higher than the compared method, demonstrating the success of the resolution improvement usingmore »Free, publicly-accessible full text available November 22, 2023
-
Zero-dimensional (0D) halides perovskites, in which anionic metal-halide octahedra (MX 6 ) 4− are separated by organic or inorganic countercations, have recently shown promise as excellent luminescent materials. However, the origin of the photoluminescence (PL) and, in particular, the different photophysical properties in hybrid organic–inorganic and all inorganic halides are still poorly understood. In this work, first-principles calculations were performed to study the excitons and intrinsic defects in 0D hybrid organic–inorganic halides (C 4 N 2 H 14 X) 4 SnX 6 (X = Br, I), which exhibit a high photoluminescence quantum efficiency (PLQE) at room temperature (RT), and also in the 0D inorganic halide Cs 4 PbBr 6 , which suffers from strong thermal quenching when T > 100 K. We show that the excitons in all three 0D halides are strongly bound and cannot be detrapped or dissociated at RT, which leads to immobile excitons in (C 4 N 2 H 14 X) 4 SnX 6 . However, the excitons in Cs 4 PbBr 6 can still migrate by tunneling, enabled by the resonant transfer of excitation energy (Dexter energy transfer). The exciton migration in Cs 4 PbBr 6 leads to a higher probability of trapping and nonradiativemore »
-
Abstract High‐speed video data were used to analyze the initiation and propagation of 36 needles and their associated 306 flickering events observed in a single‐stroke positive cloud‐to‐ground (+CG) flash. The needles occurred during the return‐stroke later stage and the continuing current, within approximate 10 ms after the onset of the +CG return stroke. They initiated near the lateral surface of the predominantly horizontal channel and extended almost perpendicular to that channel. Flickering events are recoil type streamers (or leaders) that retrace the channels created by needles. Flickering events can be repetitive and are classified into four categories based on different scenarios of their occurrence. Needles are caused by the radial motion of negative charge from the hot core of the positive‐leader channel into the positive corona sheath surrounding the core, when the core is rapidly recharged (its radial electric field reversed) by the return‐stroke process and during the following continuing current.