skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Ma, Yuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A double-edged sword in two-dimensional material science and technology is optically forbidden dark exciton. On the one hand, it is fascinating for condensed matter physics, quantum information processing, and optoelectronics due to its long lifetime. On the other hand, it is notorious for being optically inaccessible from both excitation and detection standpoints. Here, we provide an efficient and low-loss solution to the dilemma by reintroducing photonics bound states in the continuum (BICs) to manipulate dark excitons in the momentum space. In a monolayer tungsten diselenide under normal incidence, we demonstrated a giant enhancement (~1400) for dark excitons enabled by transverse magnetic BICs with intrinsic out-of-plane electric fields. By further employing widely tunable Friedrich-Wintgen BICs, we demonstrated highly directional emission from the dark excitons with a divergence angle of merely 7°. We found that the directional emission is coherent at room temperature, unambiguously shown in polarization analyses and interference measurements. Therefore, the BICs reintroduced as a momentum-space photonic environment could be an intriguing platform to reshape and redefine light-matter interactions in nearby quantum materials, such as low-dimensional materials, otherwise challenging or even impossible to achieve.

    more » « less
  2. null (Ed.)
  3. Abstract

    Despite its electron deficiency, boron can form multiple bonds with a variety of elements. However, multiple bonds between boron and main-group metal elements are relatively rare. Here we report the observation of boron-lead multiple bonds in PbB2Oand PbB3O2, which are produced and characterized in a cluster beam. PbB2Ois found to have an open-shell linear structure, in which the bond order of B☱Pb is 2.5, while the closed-shell [Pb≡B–B≡O]2–contains a B≡Pb triple bond. PbB3O2is shown to have a Y-shaped structure with a terminal B = Pb double bond coordinated by two boronyl ligands. Comparison between [Pb≡B–B≡O]2–/[Pb=B(B≡O)2]and the isoelectronic [Pb≡B–C≡O]/[Pb=B(C≡O)2]+carbonyl counterparts further reveals transition-metal-like behaviors for the central B atoms. Additional theoretical studies show that Ge and Sn can form similar boron species as Pb, suggesting the possibilities to synthesize new compounds containing multiple boron bonds with heavy group-14 elements.

    more » « less
  4. Viral infections are a major global health issue, but no current method allows rapid, direct, and ultrasensitive quantification of intact viruses with the ability to inform infectivity, causing misdiagnoses and spread of the viruses. Here, we report a method for direct detection and differentiation of infectious from noninfectious human adenovirus and SARS-CoV-2, as well as from other virus types, without any sample pretreatment. DNA aptamers are selected from a DNA library to bind intact infectious, but not noninfectious, virus and then incorporated into a solid-state nanopore, which allows strong confinement of the virus to enhance sensitivity down to 1 pfu/ml for human adenovirus and 1 × 10 4 copies/ml for SARS-CoV-2. Applications of the aptamer-nanopore sensors in different types of water samples, saliva, and serum are demonstrated for both enveloped and nonenveloped viruses, making the sensor generally applicable for detecting these and other emerging viruses of environmental and public health concern. 
    more » « less
  5. null (Ed.)
    Size-selected negatively-charged boron clusters (B n − ) have been found to be planar or quasi-planar in a wide size range. Even though cage structures emerged as the global minimum at B 39 − , the global minimum of B 40 − was in fact planar. Only in the neutral form did the B 40 borospherene become the global minimum. How the structures of larger boron clusters evolve is of immense interest. Here we report the observation of a bilayer B 48 − cluster using photoelectron spectroscopy and first-principles calculations. The photoelectron spectra of B 48 − exhibit two well-resolved features at low binding energies, which are used as electronic signatures to compare with theoretical calculations. Global minimum searches and theoretical calculations indicate that both the B 48 − anion and the B 48 neutral possess a bilayer-type structure with D 2h symmetry. The simulated spectrum of the D 2h B 48 − agrees well with the experimental spectral features, confirming the bilayer global minimum structure. The bilayer B 48 −/0 clusters are found to be highly stable with strong interlayer covalent bonding, revealing a new structural type for size-selected boron clusters. The current study shows the structural diversity of boron nanoclusters and provides experimental evidence for the viability of bilayer borophenes. 
    more » « less
  6. Abstract

    The ability to reconfigure spin structure and spin‐photon interactions by an external electric field is a prerequisite for seamless integration of opto‐spintronics into modern electronics. In this study, the use of electric field on the tuning of circular photo galvanic effect in a quasi‐2D oxyhalide perovskite Bi4NbO8Cl is reported. The electrical transport measurements are applied to study the switching characteristics of the microsheet devices. The electric field is used to tune the nanoscale devices and an optical orientation approach is applied to understand the field‐tuned spin‐polarized band structures. It is found that the circular photogalvanic current can be erased and re‐created by poling, indicating the electric‐field‐based control over spin structure. The study enriches the basic understanding of the symmetry‐regulated optoelectronic response in ferroelectrics with spin‐orbit coupling.

    more » « less
  7. Abstract Background

    H7N9 avian influenza is an infection of public health concern, in part because of its high mortality rate and pandemic potential.


    To describe the clinical features of H7N9 avian influenza and the response to treatment.


    Clinical, radiological and histopathological data, and treatment‐related of H7N9‐infected patients hospitalised during 2014–2017 were extracted and analysed.


    A total of 17 H7N9 patients (three females; mean age, 58.4 ± 13.7 years) was identified; of these six died. All patients presented with fever and productive cough; four patients had haemoptysis and 13 had chest distress and/or shortness of breath. Early subnormal white blood cell count and elevation of serum liver enzymes were common. Multilobar patchy shadows, rapid progression to ground‐glass opacities, air bronchograms and consolidation were the most common imaging findings. Histopathological examination of lung tissue of three patients who died showed severe alveolar epithelial cell damage, with inflammatory exudation into the alveolar space and hyaline membrane formation; widened alveolar septae, prominent inflammatory cell infiltration; and hyperplasia of pneumocytes. Viral inclusions were found in the lung tissue of two patients. All patients received antiviral drugs (oseltamivir ± peramivir). Four patients carried the rs12252‐C/C interferon‐induced transmembrane protein‐3 (IFITM3) genotype, while the others had the C/T genotype.


    H7N9 virus infection causes human influenza‐like symptoms, but may rapidly progress to severe pneumonia and even death. Clinicians should be alert to the possibility of H7N9 infection in high‐risk patients. The presence of theIFITM3rs12252‐C genotype may predict severe illness.

    more » « less