skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coherent momentum control of forbidden excitons
Abstract A double-edged sword in two-dimensional material science and technology is optically forbidden dark exciton. On the one hand, it is fascinating for condensed matter physics, quantum information processing, and optoelectronics due to its long lifetime. On the other hand, it is notorious for being optically inaccessible from both excitation and detection standpoints. Here, we provide an efficient and low-loss solution to the dilemma by reintroducing photonics bound states in the continuum (BICs) to manipulate dark excitons in the momentum space. In a monolayer tungsten diselenide under normal incidence, we demonstrated a giant enhancement (~1400) for dark excitons enabled by transverse magnetic BICs with intrinsic out-of-plane electric fields. By further employing widely tunable Friedrich-Wintgen BICs, we demonstrated highly directional emission from the dark excitons with a divergence angle of merely 7°. We found that the directional emission is coherent at room temperature, unambiguously shown in polarization analyses and interference measurements. Therefore, the BICs reintroduced as a momentum-space photonic environment could be an intriguing platform to reshape and redefine light-matter interactions in nearby quantum materials, such as low-dimensional materials, otherwise challenging or even impossible to achieve.  more » « less
Award ID(s):
2103842
PAR ID:
10380297
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The momentum-forbidden dark excitons can have a pivotal role in quantum information processing, Bose–Einstein condensation, and light-energy harvesting. Anatase TiO2with an indirect band gap is a prototypical platform to study bright to momentum-forbidden dark exciton transition. Here, we examine, by GW plus the real-time Bethe–Salpeter equation combined with the nonadiabatic molecular dynamics (GW + rtBSE-NAMD), the many-body transition that occurs within 100 fs from the optically excited bright to the strongly bound momentum-forbidden dark excitons in anatase TiO2. Comparing with the single-particle picture in which the exciton transition is considered to occur through electron–phonon scattering, within the GW + rtBSE-NAMD framework, the many-body electron–hole Coulomb interaction activates additional exciton relaxation channels to notably accelerate the exciton transition in competition with other radiative and nonradiative processes. The existence of dark excitons and ultrafast bright–dark exciton transitions sheds insights into applications of anatase TiO2in optoelectronic devices and light-energy harvesting as well as the formation process of dark excitons in semiconductors. 
    more » « less
  2. The generation of exciton–polaritons through strong light–matter interactions represents an emerging platform for exploring quantum phenomena. A significant challenge in colloidal nanocrystal-based polaritonic systems is the ability to operate at room temperature with high fidelity. Here, we demonstrate the generation of room-temperature exciton–polaritons through the coupling of CdSe nanoplatelets (NPLs) with a Fabry–Pérot optical cavity, leading to a Rabi splitting of 74.6 meV. Quantum–classical calculations accurately predict the complex dynamics between the many dark state excitons and the optically allowed polariton states, including the experimentally observed lower polariton photoluminescence emission, and the concentration of photoluminescence intensities at higher in-plane momenta as the cavity becomes more negatively detuned. The Rabi splitting measured at 5 K is similar to that at 300 K, validating the feasibility of the temperature-independent operation of this polaritonic system. Overall, these results show that CdSe NPLs are an excellent material to facilitate the development of room-temperature quantum technologies. 
    more » « less
  3. The valley degree of freedom that results from broken inversion symmetry in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) has sparked a lot of interest due to its huge potential in information processing. In this experimental work, to optically address the valley-polarized emission from three-layer (3 L) thick WS2at room temperature, we employ a SiN photonic crystal slab that has two sets of holes in a square lattice that supports directional circular dichroism engendered by delocalized guided mode resonances. By perturbatively breaking the inversion symmetry of the photonic crystal slab, we can simultaneously manipulate s and p components of the radiating field so that these resonances correspond to circularly polarized emission. The emission of excitons from distinct valleys is coupled into different radiative channels and hence separated in the farfield. This directional exciton emission from selective valleys provides a potential route for valley-polarized light emitters, which lays the groundwork for future valleytronic devices. 
    more » « less
  4. Interactions of quantum materials with strong laser fields can induce exotic non-equilibrium electronic states. Monolayer transition metal dichalcogenides, a new class of direct-gap semiconductors with prominent quantum confinement, offer exceptional opportunities for the Floquet engineering of excitons, which are quasiparticle electron–hole correlated states8. Strong-field driving has the potential to achieve enhanced control of the electronic band structure and thus the possibility of opening a new realm of exciton light–matter interactions. However, a full characterization of strong-field driven exciton dynamics has been difficult. Here we use mid-infrared laser pulses below the optical bandgap to excite monolayer tungsten disulfide and demonstrate strong-field light dressing of excitons in excess of a hundred millielectronvolts. Our high-sensitivity transient absorption spectroscopy further reveals the formation of a virtual absorption feature below the 1s-exciton resonance, which we assign to a light-dressed sideband from the dark 2p-exciton state. Quantum-mechanical simulations substantiate the experimental results and enable us to retrieve real-space movies of the exciton dynamics. This study advances our understanding of the exciton dynamics in the strong-field regime, showing the possibility of harnessing ultrafast, strong-field phenomena in device applications of two-dimensional materials. 
    more » « less
  5. Abstract Recent studies of the optical properties of 2D materials have reported unique phenomena and features that are absent in conventional bulk semiconductors. Many of these interesting properties, such as enhanced light‐matter coupling, gate‐tunable photoluminescence, and unusual excitonic optical selection rules arise from the nature of the two‐ and multi‐particle excited states such as strongly bound Wannier excitons and charged excitons. The theory, modeling, and ab initio calculations of these optically excited states in 2D materials are reviewed. Several analytical and ab initio approaches are introduced. These methods are compared with each other, revealing their relative strength and limitations. Recent works that apply these methods to a variety of 2D materials and material‐defect systems are then highlighted. Understanding of the optically excited states in these systems is relevant not only for fundamental scientific research of electronic excitations and correlations, but also plays an important role in the future development of quantum information science and nano‐photonics. 
    more » « less