- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Perez, Alberto (4)
-
MacCallum, Justin L. (3)
-
Mondal, Arup (3)
-
Gaalswyk, Kari (2)
-
Chang, Liwei (1)
-
Jaroniec, Christopher P. (1)
-
Lenz, Stefan (1)
-
MacCallum, Justin L (1)
-
Singh, Bhumika (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mondal, Arup; Lenz, Stefan; MacCallum, Justin L.; Perez, Alberto (, Current Opinion in Structural Biology)
-
Chang, Liwei; Mondal, Arup; MacCallum, Justin L.; Perez, Alberto (, The Journal of Physical Chemistry A)
-
Perez, Alberto; Gaalswyk, Kari; Jaroniec, Christopher P.; MacCallum, Justin L. (, Angewandte Chemie International Edition)Abstract There is a pressing need for new computational tools to integrate data from diverse experimental approaches in structural biology. We present a strategy that combines sparse paramagnetic solid‐state NMR restraints with physics‐based atomistic simulations. Our approach explicitly accounts for uncertainty in the interpretation of experimental data through the use of a semi‐quantitative mapping between the data and the restraint energy that is calibrated by extensive simulations. We apply our approach to solid‐state NMR data for the model protein GB1 labeled with Cu2+‐EDTA at six different sites. We are able to determine the structure to 0.9 Å accuracy within a single day of computation on a GPU cluster. We further show that in some cases, the data from only a single paramagnetic tag are sufficient for accurate folding.more » « less
An official website of the United States government
