skip to main content

Search for: All records

Creators/Authors contains: "MacCready, Parker"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Salish Sea is a large, fjordal estuarine system opening onto the northeast Pacific Ocean. It develops a strong estuarine exchange flow that draws in nutrients from the ocean and flushes the system on timescales of several months. It is difficult to apply existing dynamical theories of estuarine circulation there because of the extreme bathymetric complexity. A realistic numerical model of the system was manipulated to have stronger and weaker tides to explore the sensitivity of the exchange flow to tides. This sensitivity was explored over two timescales: annual means and the spring‐neap. Two theories for the estuarine exchange flow are: (a) “gravitational circulation” where exchange is driven by the baroclinic pressure gradient due to along‐channel salinity variation, and (b) “tidal pumping” where tidal advection combined with flow separation forces the exchange. Past observations suggested gravitational circulation was of leading importance in the Salish Sea. We find here that the exchange flow increases with stronger tides, particularly in annual averages, suggesting it is controlled by tidal pumping. However, the landward salt transport due to the exchange flow decreases with stronger tides because greater mixing decreases the salinity difference between incoming and outgoing water. These results may be characteristic of estuarine systems that have rough topography and strong tides.

    more » « less
  2. Abstract A salinity variance framework is used to study mixing in the Salish Sea, a large fjordal estuary. Output from a realistic numerical model is used to create salinity variance budgets for individual basins within the Salish Sea for 2017–19. The salinity variance budgets are used to quantify the mixing in each basin and estimate the numerical mixing, which is found to contribute about one-third of the total mixing in the model. Whidbey Basin has the most intense mixing, due to its shallow depth and large river flow. Unlike in most other estuarine systems previously studied using the salinity variance method, mixing in the Salish Sea is controlled by the river flow and does not exhibit a pronounced spring–neap cycle. A “mixedness” analysis is used to determine when mixed water is expelled from the estuary. The river flow is correlated with mixed water removal, but the coupling is not as tight as with the mixing. Because the mixing is so highly correlated with the river flow, the long-term average approximation M = Q r s out s in can be used to predict the mixing in the Salish Sea and Puget Sound with good accuracy, even without any temporal averaging. Over a 3-yr average, the mixing in Puget Sound is directly related to the exchange flow salt transport. 
    more » « less
  3. Abstract The inflow to an estuary originates on the shelf. It flushes the estuary and can bring in nutrients, heat, salt, and hypoxic water, having consequences for estuarine ecosystems and fjordic glacial melt. However, the source of estuarine inflow has only been explored in simple models that do not resolve interactions between inflow and outflow outside of the estuarine channel. This study addressed the estuary inflow problem using variations on a three-dimensional primitive equation model of an idealized estuarine channel next to a sloping, unstratified shelf with mixing provided by a single frequency, 12-hour tide. Inflow was identified using particle tracking, momentum budgets, and Total Exchange Flow. Inflow sources were found in shelf water downstream of the estuary, river plume water, and shelf water upstream of the estuary. Downstream is defined here with respect to the direction of coastal trapped wave propagation, which is to the right for an observer looking seaward from the estuary mouth in the northern hemisphere. Downstream of the estuary and offshore of the plume, the dynamics were quasi-geostrophic, consistent with previous simple models. The effect of this inflowing current on the geometry of the river plume front was found to be small. Novel sources of inflow were identified which originated from within the plume and upstream of the estuary. 
    more » « less
  4. Abstract. Global projections for ocean conditions in 2100 predict that the North Pacific will experience some of the largest changes. Coastal processes that drive variability in the region can alter these projected changes but are poorly resolved by global coarse-resolution models. We quantify the degree to which local processes modify biogeochemical changes in the eastern boundary California Current System (CCS) using multi-model regionally downscaled climate projections of multiple climate-associated stressors (temperature, O2, pH, saturation state (Ω), and CO2). The downscaled projections predict changes consistent with the directional change from the global projections for the same emissions scenario. However, the magnitude and spatial variability of projected changes are modified in the downscaled projections for carbon variables. Future changes in pCO2 and surface Ω are amplified, while changes in pH and upper 200 m Ω are dampened relative to the projected change in global models. Surface carbon variable changes are highly correlated to changes in dissolved inorganic carbon (DIC), pCO2 changes over the upper 200 m are correlated to total alkalinity (TA), and changes at the bottom are correlated to DIC and nutrient changes. The correlations in these latter two regions suggest that future changes in carbon variables are influenced by nutrient cycling, changes in benthic–pelagic coupling, and TA resolved by the downscaled projections. Within the CCS, differences in global and downscaled climate stressors are spatially variable, and the northern CCS experiences the most intense modification. These projected changes are consistent with the continued reduction in source water oxygen; increase in source water nutrients; and, combined with solubility-driven changes, altered future upwelled source waters in the CCS. The results presented here suggest that projections that resolve coastal processes are necessary for adequate representation of the magnitude of projected change in carbon stressors in the CCS. 
    more » « less
  5. Abstract. For more than a century, estuarine exchange flow has been quantified by meansof the Knudsen relations which connect bulk quantities such as inflow andoutflow volume fluxes and salinities. These relations are closely linked toestuarine mixing. The recently developed Total Exchange Flow (TEF) analysis framework, which usessalinity coordinates to calculate these bulk quantities, allows an exactformulation of the Knudsen relations in realistic cases. There are howevernumerical issues, since the original method does not converge to the TEF bulkvalues for an increasing number of salinity classes. In the present study,this problem is investigated and the method of dividing salinities,described by MacCready et al. (2018), is mathematically introduced. Achallenging yet compact analytical scenario for a well-mixed estuarineexchange flow is investigated for both methods, showing the properconvergence of the dividing salinity method. Furthermore, the dividingsalinity method is applied to model results of the Baltic Sea to demonstratethe analysis of realistic exchange flows and exchange flows with more thantwo layers.

    more » « less