- Award ID(s):
- 2048373
- NSF-PAR ID:
- 10348314
- Date Published:
- Journal Name:
- Biogeosciences
- Volume:
- 18
- Issue:
- 9
- ISSN:
- 1726-4189
- Page Range / eLocation ID:
- 2871 to 2890
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
With the increasing threat of ocean acidification and the important role of the oceans in the global carbon cycle, highly precise, accurate, and intercomparable determination of inorganic carbon system parameters is required. Thermodynamic relationships enable the system to be fully constrained using a combination of direct measurements and calculations. However, calculations are complicated by many formulations for dissociation constants (over 120 possible combinations). To address these important issues of uncertainty and comparability, we evaluated the various combinations of constants and their (dis)agreement with direct measurements over a range of temperature (−1.9–40 ◦C), practical salinity (15–39) and pCO2 (150–1200 μatm). The results demonstrate that differences between the calculations and measurements are significantly larger than measurement uncertainties, meaning the oft-stated paradigm that one only needs to measure two parameters and the others can be calculated does not apply for climate quality ocean acidification research. The uncertainties in calculated pHt prevent climate quality pHt from being calculated from total alkalinity (TA) and dissolved inorganic carbon (DIC) and should be directly measured instead. However, climate quality TA and DIC can often be calculated using measured pH and DIC or TA respectively. Calculations are notably biased at medium-to-high pCO2 values (~500–800 μatm) implying models underestimate future ocean acidification. Uncertainty in the dissociation constants leads to significant uncertainty in the depth of the aragonite saturation horizon (>500 m in the Southern Ocean) and must be considered when studying calcium carbonate cycling. Significant improvements in the precision of the thermodynamic constants are required to improve pHt calculations.more » « less
-
Abstract The associated uncertainties of future climate projections are one of the biggest obstacles to overcome in studies exploring the potential regional impacts of future climate shifts. In remote and climatically complex regions, the limited number of available downscaled projections may not provide an accurate representation of the underlying uncertainty in future climate or the possible range of potential scenarios. Consequently, global downscaled projections are now some of the most widely used climate datasets in the world. However, they are rarely examined for representativeness of local climate or the plausibility of their projected changes. Here we explore the utility of two such global datasets (CHELSA and WorldClim2) in providing plausible future climate scenarios for regional climate change impact studies. Our analysis was based on three steps: (1) standardizing a baseline period to compare available global downscaled projections with regional observation-based datasets and regional downscaled datasets; (2) bias correcting projections using a single observation-based baseline; and (3) having controlled differences in baselines between datasets, exploring the patterns and magnitude of projected climate shifts from these datasets to determine their plausibility as future climate scenarios, using Hawaiʻi as an example region. Focusing on mean annual temperature and precipitation, we show projected climate shifts from these commonly used global datasets not only may vary significantly from one another but may also fall well outside the range of future scenarios derived from regional downscaling efforts. As species distribution models are commonly created from these datasets, we further illustrate how a substantial portion of variability in future species distribution shifts can arise from the choice of global dataset used. Hence, projected shifts between baseline and future scenarios from these global downscaled projections warrant careful evaluation before use in climate impact studies, something rarely done in the existing literature.
-
Abstract Measuring, reporting, and verification (MRV) of ocean-based carbon dioxide removal (CDR) presents challenges due to the dynamic nature of the ocean and the complex processes influencing marine carbonate chemistry. Given these challenges, finding the optimal sampling strategies and suite of parameters to be measured is a timely research question. While traditional carbonate parameters such as total alkalinity (TA), dissolved inorganic carbon (DIC), pH, and seawater pCO2 are commonly considered, exploring the potential of carbon isotopes for quantifying additional CO2 uptake remains a relatively unexplored research avenue. In this study, we use a coupled physical-biogeochemical model of the California Current System (CCS) to run a suite of Ocean Alkalinity Enhancement (OAE) simulations. The physical circulation for the CCS is generated using a nested implementation of the Regional Ocean Modeling System (ROMS) with an outer domain of 1/10 ̊ (~10 km) and an inner domain of 1/30 ̊ (~3 km) resolution. The biogeochemical model, NEMUCSC, is a customized version of the North Pacific Ecosystem Model for Understanding Regional Oceanography (NEMURO) that includes carbon cycling and carbon isotopes. The CCS is one of four global eastern boundary upwelling systems characterized by high biological activity and CO2 concentrations. Consequently, the CCS represents an essential test case for investigating the efficacy and potential side effects of OAE deployments. The study aims to address two key questions: (1) the relative merit of OAE to counter ocean acidification versus the additional sequestration of CO2 from the atmosphere, and (2) the footprint of potentially harmful seawater chemistry adjacent to OAE deployments. We plan to leverage these high-resolution model results to competitively evaluate different MRV strategies, with a specific focus on analyzing the spatiotemporal distribution of carbon isotopic signatures following OAE. In this talk, we will showcase our initial results and discuss challenges in integrating high-resolution regional modeling into models of the global carbon cycle. More broadly, this work aims to provide insights into the plausibility of OAE as a climate solution that maintains ocean health and to inform accurate quantification of carbon uptake for MRV purposes. https://agu.confex.com/agu/OSM24/prelim.cgi/Paper/1491096more » « less
-
Abstract Measuring, reporting, and verification (MRV) of ocean-based carbon dioxide removal (CDR) presents challenges due to the dynamic nature of the ocean and the complex processes influencing marine carbonate chemistry. Given these challenges, finding the optimal sampling strategies and suite of parameters to be measured is a timely research question. While traditional carbonate parameters such as total alkalinity (TA), dissolved inorganic carbon (DIC), pH, and seawater pCO2 are commonly considered, exploring the potential of carbon isotopes for quantifying additional CO2 uptake remains a relatively unexplored research avenue. In this study, we use a coupled physical-biogeochemical model of the California Current System (CCS) to run a suite of Ocean Alkalinity Enhancement (OAE) simulations. The physical circulation for the CCS is generated using a nested implementation of the Regional Ocean Modeling System (ROMS) with an outer domain of 1/10 ̊ (~10 km) and an inner domain of 1/30 ̊ (~3 km) resolution. The biogeochemical model, NEMUCSC, is a customized version of the North Pacific Ecosystem Model for Understanding Regional Oceanography (NEMURO) that includes carbon cycling and carbon isotopes. The CCS is one of four global eastern boundary upwelling systems characterized by high biological activity and CO2 concentrations. Consequently, the CCS represents an essential test case for investigating the efficacy and potential side effects of OAE deployments. The study aims to address two key questions: (1) the relative merit of OAE to counter ocean acidification versus the additional sequestration of CO2 from the atmosphere, and (2) the footprint of potentially harmful seawater chemistry adjacent to OAE deployments. We plan to leverage these high-resolution model results to competitively evaluate different MRV strategies, with a specific focus on analyzing the spatiotemporal distribution of carbon isotopic signatures following OAE. In this talk, we will showcase our initial results and discuss challenges in integrating high-resolution regional modeling into models of the global carbon cycle. More broadly, this work aims to provide insights into the plausibility of OAE as a climate solution that maintains ocean health and to inform accurate quantification of carbon uptake for MRV purposes. https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1437343more » « less
-
Abstract In coastal regions and marginal bodies of water, the increase in partial pressure of carbon dioxide (
p CO2) in many instances is greater than that of the open ocean due to terrestrial (river, estuarine, and wetland) influences, decreasing buffering capacity and/or increasing water temperatures. Coastal oceans receive freshwater from rivers and groundwater as well as terrestrial-derived organic matter, both of which have a direct influence on coastal carbonate chemistry. The objective of this research is to determine if coastal marshes in Georgia, USA, may be “hot-spots” for acidification due to enhanced inorganic carbon sources and if there is terrestrial influence on offshore acidification in the South Atlantic Bight (SAB). The results of this study show that dissolved inorganic carbon (DIC) and total alkalinity (TA) are elevated in the marshes compared to predictions from conservative mixing of the freshwater and oceanic end-members, with accompanying pH around 7.2 to 7.6 within the marshes and aragonite saturation states (ΩAr) <1. In the marshes, there is a strong relationship between the terrestrial/estuarine-derived organic and inorganic carbon and acidification. Comparisons of pH, TA, and DIC to terrestrial organic material markers, however, show that there is little influence of terrestrial-derived organic matter on shelf acidification during this period in 2014. In addition, ΩArincreases rapidly offshore, especially in drier months (July). River stream flow during 2014 was anomalously low compared to climatological means; therefore, offshore influences from terrestrial carbon could also be decreased. The SAB shelf may not be strongly influenced by terrestrial inputs to acidification during drier than normal periods; conversely, shelf waters that are well-buffered against acidification may not play a significant role in mitigating acidification within the Georgia marshes.