skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "MacGillivray, Kathryn A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The evolutionary transition to multicellularity requires shifting the primary unit of selection from cells to multicellular collectives. How this occurs in aggregative organisms remains poorly understood. Clonal development provides a direct path to multicellular adaptation through genetic identity between cells, but aggregative organisms face a constraint: selection on collective-level traits cannot drive adaptation without positive genetic assortment. We leveraged experimental evolution of flocculatingSaccharomyces cerevisiaeto examine the evolution and role of genetic assortment in multicellular adaptation. After 840 generations of selection for rapid settling, 13 of 19 lineages evolved increased positive assortment relative to their ancestor. However, assortment provided no competitive advantage during settling selection, suggesting it arose as an indirect effect of selection on cell-level traits rather than through direct selection on collective-level properties. Genetic reconstruction experiments and protein structure modeling revealed two distinct pathways to assortment: kin recognition mediated by mutations in theFLO1adhesion gene and generally enhanced cellular adhesion that improved flocculation efficiency independent of partner genotype. The evolution of assortment without immediate adaptive benefit suggests that key innovations enabling multicellular adaptation may arise indirectly through cell-level selection. Our results demonstrate fundamental constraints on aggregative multicellularity and help explain why aggregative lineages have remained simple. 
    more » « less
    Free, publicly-accessible full text available February 18, 2026
  2. During the biofilm life cycle, bacteria attach to a surface and then reproduce, forming crowded, growing communities. Many theoretical models of biofilm growth dynamics have been proposed; however, difficulties in accurately measuring biofilm height across relevant time and length scales have prevented testing these models, or their biophysical underpinnings, empirically. Using white light interferometry, we measure the heights of microbial colonies with nanometer precision from inoculation to their final equilibrium height, producing a detailed empirical characterization of vertical growth dynamics. We propose a heuristic model for vertical growth dynamics based on basic biophysical processes inside a biofilm: diffusion and consumption of nutrients and growth and decay of the colony. This model captures the vertical growth dynamics from short to long time scales (10 min to 14 d) of diverse microorganisms, including bacteria and fungi. 
    more » « less