Abstract Bacterial biofilms, surface-attached microbial communities, grow horizontally across surfaces and vertically above them. Although a simple heuristic model for vertical growth was experimentally shown to accurately describe the behavior of diverse microbial species, the biophysical implications and theoretical basis for this empirical model were unclear. Here, we demonstrate that this heuristic model emerges naturally from fundamental principles of active fluid dynamics. By analytically deriving solutions for an active fluid model of vertical biofilm growth, we show that the governing equations reduce to the same form as the empirical model in both early- and late-stage growth regimes. Our analysis reveals that cell death and decay rates likely play key roles in determining the characteristic parameters of vertical growth. The active fluid model produces a single, simple equation governing growth at all heights that is surprisingly simpler than the heuristic model. With this theoretical basis, we explain why the vertical growth rate reaches a maximum at a height greater than the previously identified characteristic length scale. These results provide a theoretical foundation for a simple mathematical model of vertical growth, enabling deeper understanding of how biological and biophysical factors interact during biofilm development. 
                        more » 
                        « less   
                    
                            
                            Vertical growth dynamics of biofilms
                        
                    
    
            During the biofilm life cycle, bacteria attach to a surface and then reproduce, forming crowded, growing communities. Many theoretical models of biofilm growth dynamics have been proposed; however, difficulties in accurately measuring biofilm height across relevant time and length scales have prevented testing these models, or their biophysical underpinnings, empirically. Using white light interferometry, we measure the heights of microbial colonies with nanometer precision from inoculation to their final equilibrium height, producing a detailed empirical characterization of vertical growth dynamics. We propose a heuristic model for vertical growth dynamics based on basic biophysical processes inside a biofilm: diffusion and consumption of nutrients and growth and decay of the colony. This model captures the vertical growth dynamics from short to long time scales (10 min to 14 d) of diverse microorganisms, including bacteria and fungi. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10417019
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 11
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Bacteria often attach to surfaces and grow densely-packed communities called biofilms. As biofilms grow, they expand across the surface, increasing their surface area and access to nutrients. Thus, the overall growth rate of a biofilm is directly dependent on its “range expansion” rate. One factor that limits the range expansion rate is vertical growth; at the biofilm edge there is a direct trade-off between horizontal and vertical growth—the more a biofilm grows up, the less it can grow out. Thus, the balance of horizontal and vertical growth impacts the range expansion rate and, crucially, the overall biofilm growth rate. However, the biophysical connection between horizontal and vertical growth remains poorly understood, due in large part to difficulty in resolving biofilm shape with sufficient spatial and temporal resolution from small length scales to macroscopic sizes. Here, we experimentally show that the horizontal expansion rate of bacterial colonies is controlled by the contact angle at the biofilm edge. Using white light interferometry, we measure the three-dimensional surface morphology of growing colonies, and find that small colonies are surprisingly well-described as spherical caps. At later times, nutrient diffusion and uptake prevent the tall colony center from growing exponentially. However, the colony edge always has a region short enough to grow exponentially; the size and shape of this region, characterized by its contact angle, along with cellular doubling time, determines the range expansion rate. We found that the geometry of the exponentially growing biofilm edge is well-described as a spherical-cap-napkin-ring, i.e., a spherical cap with a cylindrical hole in its center (where the biofilm is too tall to grow exponentially). We derive an exact expression for the spherical-cap-napkin-ring-based range expansion rate; further, to first order, the expansion rate only depends on the colony contact angle, the thickness of the exponentially growing region, and the cellular doubling time. We experimentally validate both of these expressions. In line with our theoretical predictions, we find that biofilms with long cellular doubling times and small contact angles do in fact grow faster than biofilms with short cellular doubling times and large contact angles. Accordingly, sensitivity analysis shows that biofilm growth rates are more sensitive to their contact angles than to their cellular growth rates. Thus, to understand the fitness of a growing biofilm, one must account for its shape, not just its cellular doubling time.more » « less
- 
            Abstract The ability of bacteria to colonize and grow on different surfaces is an essential process for biofilm development. Here, we report the use of synthetic hydrogels with tunable stiffness and porosity to assess physical effects of the substrate on biofilm development. Using time-lapse microscopy to track the growth of expanding Serratia marcescens colonies, we find that biofilm colony growth can increase with increasing substrate stiffness, unlike what is found on traditional agar substrates. Using traction force microscopy-based techniques, we find that biofilms exert transient stresses correlated over length scales much larger than a single bacterium, and that the magnitude of these forces also increases with increasing substrate stiffness. Our results are consistent with a model of biofilm development in which the interplay between osmotic pressure arising from the biofilm and the poroelastic response of the underlying substrate controls biofilm growth and morphology.more » « less
- 
            Bordenstein, Seth (Ed.)ABSTRACT Encounters among bacteria and their viral predators (bacteriophages) are among the most common ecological interactions on Earth. These encounters are likely to occur with regularity inside surface-bound communities that microbes most often occupy in natural environments. Such communities, termed biofilms, are spatially constrained: interactions become limited to near neighbors, diffusion of solutes and particulates can be reduced, and there is pronounced heterogeneity in nutrient access and physiological state. It is appreciated from prior theoretical work that phage-bacteria interactions are fundamentally different in spatially structured contexts, as opposed to well-mixed liquid culture. Spatially structured communities are predicted to promote the protection of susceptible host cells from phage exposure, and thus weaken selection for phage resistance. The details and generality of this prediction in realistic biofilm environments, however, are not known. Here, we explore phage-host interactions using experiments and simulations that are tuned to represent the essential elements of biofilm communities. Our simulations show that in biofilms, phage-resistant cells—as their relative abundance increases—can protect clusters of susceptible cells from phage exposure, promoting the coexistence of susceptible and phage-resistant bacteria under a large array of conditions. We characterize the population dynamics underlying this coexistence, and we show that coexistence is recapitulated in an experimental model of biofilm growth measured with confocal microscopy. Our results provide a clear view into the dynamics of phage resistance in biofilms with single-cell resolution of the underlying cell-virion interactions, linking the predictions of canonical theory to realistic models and in vitro experiments of biofilm growth. IMPORTANCE In the natural environment, bacteria most often live in communities bound to one another by secreted adhesives. These communities, or biofilms, play a central role in biogeochemical cycling, microbiome functioning, wastewater treatment, and disease. Wherever there are bacteria, there are also viruses that attack them, called phages. Interactions between bacteria and phages are likely to occur ubiquitously in biofilms. We show here, using simulations and experiments, that biofilms will in most conditions allow phage-susceptible bacteria to be protected from phage exposure, if they are growing alongside other cells that are phage resistant. This result has implications for the fundamental ecology of phage-bacteria interactions, as well as the development of phage-based antimicrobial therapeutics.more » « less
- 
            Abstract Biofilms play critical roles in wastewater treatment, bioremediation, and medical-device-related infections. Understanding the dynamics of biofilm formation and growth is essential for controlling and exploiting their properties. However, the majority of current studies have focused on the impact of steady flows on biofilm growth, while flow fluctuations are common in natural and engineered systems such as water pipes and blood vessels. Here, we reveal the effects of flow fluctuations on the development ofPseudomonas putidabiofilms through systematic microfluidic experiments and the development of a theoretical model. Our experimental results showed that biofilm growth under fluctuating flow conditions followed three phases: lag, exponential, and fluctuation phases. In contrast, biofilm growth under steady-flow conditions followed four phases: lag, exponential, stationary, and decline phases. Furthermore, we demonstrated that low-frequency flow fluctuations promoted biofilm growth, while high-frequency fluctuations inhibited its development. We attributed the contradictory impacts of flow fluctuations on biofilm growth to the adjustment time (T0) needed for biofilm to grow after the shear stress changed from high to low. Furthermore, we developed a theoretical model that explains the observed biofilm growth under fluctuating flow conditions. Our insights into the mechanisms underlying biofilm development under fluctuating flows can inform the design of strategies to control biofilm formation in diverse natural and engineered systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    