skip to main content

Search for: All records

Creators/Authors contains: "Machireddy, Venkata Samhitha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wide band gap (WBG) devices have been widely adopted in numerous industrial applications. In medium voltage applications, multi-level converters are necessary to reduce the voltage stress on power devices, which increases the system control complexity and reduces power density and reliability. High voltage silicon carbide (SiC) MOSFET enables the medium voltage applications with less voltage level, simple control strategy and high power density. Nevertheless, great challenges have been posed on the gate driver design for high voltage SiC MOSFET. Wireless power transfer (WPT) can achieve power conversion with large airgap, which can satisfy the system isolation requirement. Thus, in this article, a WPT based gate driver is designed for the medium voltage SiC MOSFET. The coil is optimized by considering voltage isolation, coupling capacitance, size, and efficiency. Experimental prototype was built and tested to validate the effectiveness of the proposed WPT based gate driver.
  2. Wide band gap (WBG) devices have been widely applied in industrial applications owning to their advantages of low switching loss, low on-stage voltage drop, and high operating temperature. Paralleling operation of power devices/modules is attractive due to its cost-effective and high power characteristics. In applications require very high current capability, paralleling operation of off-the-shelf power devices/modules becomes the only choice. However, current balancing operation of individual power device/module becomes difficult due to the differences of circuit parasitics. To investigate the device/module and circuit parasitics influences on the current sharing performance, in this article, a subcircuit model was built in MATLAB. Comprehensive comparisons and analysis are performed, which can provide guidance for engineers when designing the system with paralleling devices/modules. Moreover, the solutions to achieve current balancing operating are proposed with the aid of active gate driver. Experiment results are presented and analyzed to validate the effectiveness of current sharing solutions.