skip to main content

Search for: All records

Creators/Authors contains: "Maciejewski, Ross"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In graph machine learning, data collection, sharing, and analysis often involve multiple parties, each of which may require varying levels of data security and privacy. To this end, preserving privacy is of great importance in protecting sensitive information. In the era of big data, the relationships among data entities have become unprecedentedly complex, and more applications utilize advanced data structures (i.e., graphs) that can support network structures and relevant attribute information. To date, many graph-based AI models have been proposed (e.g., graph neural networks) for various domain tasks, like computer vision and natural language processing. In this paper, we focus on reviewing privacypreserving techniques of graph machine learning. We systematically review related works from the data to the computational aspects. We rst review methods for generating privacy-preserving graph data. Then we describe methods for transmitting privacy-preserved information (e.g., graph model parameters) to realize the optimization-based computation when data sharing among multiple parties is risky or impossible. In addition to discussing relevant theoretical methodology and software tools, we also discuss current challenges and highlight several possible future research opportunities for privacy-preserving graph machine learning. Finally, we envision a uni ed and comprehensive secure graph machine learning system. 
    more » « less
    Free, publicly-accessible full text available June 22, 2024
  2. Free, publicly-accessible full text available April 30, 2024
  3. Algorithmic fairness is becoming increasingly important in data mining and machine learning. Among others, a foundational notation is group fairness. The vast majority of the existing works on group fairness, with a few exceptions, primarily focus on debiasing with respect to a single sensitive attribute, despite the fact that the co-existence of multiple sensitive attributes (e.g., gender, race, marital status, etc.) in the real-world is commonplace. As such, methods that can ensure a fair learning outcome with respect to all sensitive attributes of concern simultaneously need to be developed. In this paper, we study the problem of information-theoretic intersectional fairness (InfoFair), where statistical parity, a representative group fairness measure, is guaranteed among demographic groups formed by multiple sensitive attributes of interest. We formulate it as a mutual information minimization problem and propose a generic end-to-end algorithmic framework to solve it. The key idea is to leverage a variational representation of mutual information, which considers the variational distribution between learning outcomes and sensitive attributes, as well as the density ratio between the variational and the original distributions. Our proposed framework is generalizable to many different settings, including other statistical notions of fairness, and could handle any type of learning task equipped with a gradientbased optimizer. Empirical evaluations in the fair classification task on three real-world datasets demonstrate that our proposed framework can effectively debias the classification results with minimal impact to the classification accuracy. 
    more » « less
    Free, publicly-accessible full text available December 17, 2023
  4. The quality of K-12 public education is a perennial issue in Arizona that has heightened in salience over the past several years, with broad public concerns over insufficient funding sparking the Red for Ed movement for higher teacher pay. However, despite the push for educational change, there remain many barriers to K-12 public school education funding, including a lack of visibility for how Arizona public schools are performing at a legislative district level. Such information is released at a school district level by organizations like the Arizona Department of Education, but much of the information is limited and can be difficult for legislators to parse, particularly when school districts lie on the boundary between two legislative districts. Moreover, school outcome data is often limited to raw spreadsheets for the public and may be fragmented between government websites and educational organizations depending on the metric. Ultimately, this hinders the public’s understanding of the current educational standing. As such, a visualization dashboard that clearly identifies schools and their relative performance within each legislative district would be an invaluable tool for legislative bodies and the Arizona public. It is proposed that a dashboard for Arizona at the district level would increase transparency and availability of public information about these districts, allowing legislators to utilize the dashboard as a tool for greater understanding and more effective policymaking. While there are many positive social implications to be afforded by educational dashboards, this article also points to potential risks of this new visibility without end-user training. 
    more » « less
  5. null (Ed.)
    Graph mining is an essential component of recommender systems and search engines. Outputs of graph mining models typically provide a ranked list sorted by each item's relevance or utility. However, recent research has identified issues of algorithmic bias in such models, and new graph mining algorithms have been proposed to correct for bias. As such, algorithm developers need tools that can help them uncover potential biases in their models while also exploring the impacts of correcting for biases when employing fairness-aware algorithms. In this paper, we present FairRankVis, a visual analytics framework designed to enable the exploration of multi-class bias in graph mining algorithms. We support both group and individual fairness levels of comparison. Our framework is designed to enable model developers to compare multi-class fairness between algorithms (for example, comparing PageRank with a debiased PageRank algorithm) to assess the impacts of algorithmic debiasing with respect to group and individual fairness. We demonstrate our framework through two usage scenarios inspecting algorithmic fairness. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)