Abstract. The onset of ice nucleation in mixed-phase clouds determines the lifetime and microphysical properties of ice clouds. In this work, we develop a novel method that differentiates between various phases of mixed-phase clouds, such as clouds dominated by pure liquid or pure ice segments, compared with those having ice crystals surrounded by supercooled liquid water droplets or vice versa. Using this method, we examine the relationship between the macrophysical and microphysical properties of Southern Ocean mixed-phase clouds at −40 to 0 °C (e.g. stratiform and cumuliform clouds) based on the in situ aircraft-based observations during the US National Science Foundation Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) flight campaign. The results show that the exchange between supercooled liquid water and ice crystals from a macrophysical perspective, represented by the increasing spatial ratio of regions containing ice crystals relative to the total in-cloud region (defined as ice spatial ratio), is positively correlated with the phase exchange from a microphysical perspective, represented by the increasing ice water content (IWC), decreasing liquid water content (LWC), increasing ice mass fraction, and increasing ice particle number fraction (IPNF). The mass exchange between liquid and ice becomes more significant during phase 3 when pure ice cloud regions (ICRs) start to appear. Occurrence frequencies of cloud thermodynamic phases show a significant phase change from liquid to ice at a similar temperature (i.e. −17.5 °C) among three types of definitions of mixed-phase clouds based on ice spatial ratio, ice mass fraction, or IPNF. Aerosol indirect effects are quantified for different phases using number concentrations of aerosols greater than 100 or 500 nm (N>100 and N>500, respectively). N>500 shows stronger positive correlations with ice spatial ratios compared with N>100. This result indicates that larger aerosols potentially contain ice-nucleating particles (INPs), which facilitate the formation of ice crystals in mixed-phase clouds. The impact of N>500 is also more significant in phase 2 when ice crystals just start to appear in the mixed phase compared with phase 3 when pure ICRs have formed, possibly due to the competing aerosol indirect effects on primary and secondary ice production in phase 3. The thermodynamic and dynamic conditions are quantified for each phase. The results show stronger in-cloud turbulence and higher updraughts in phases 2 and 3 when liquid and ice coexist compared with pure liquid or ice (phases 1 and 4, respectively). The highest updraughts and turbulence are seen in phase 3 when supercooled liquid droplets are surrounded by ice crystals. These results indicate both updraughts and turbulence support the maintenance of supercooled liquid water amongst ice crystals. Overall, these results illustrate the varying effects of aerosols, thermodynamics, and dynamics through various stages of mixed-phase cloud evolution based on this new method that categorizes cloud phases.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 23, 2025
-
Abstract. Aerosols affect cirrus formation and evolution, yet quantificationof these effects remain difficult based on in situ observations due to thecomplexity of nucleation mechanisms and large variabilities in icemicrophysical properties. This work employed a method to distinguish fiveevolution phases of cirrus clouds based on in situ aircraft-basedobservations from seven U.S. National Science Foundation (NSF) and five NASAflight campaigns. Both homogeneous and heterogeneous nucleation werecaptured in the 1 Hz aircraft observations, inferred from the distributionsof relative humidity in the nucleation phase. Using linear regressions toquantify the correlations between cirrus microphysical properties andaerosol number concentrations, we found that ice water content (IWC) and icecrystal number concentration (Ni) show strong positive correlations withlarger aerosols (>500 nm) in the nucleation phase, indicatingstrong contributions of heterogeneous nucleation when ice crystals firststart to nucleate. For the later growth phase, IWC and Ni show similarpositive correlations with larger and smaller (i.e., >100 nm)aerosols, possibly due to fewer remaining ice-nucleating particles in thelater growth phase that allows more homogeneous nucleation to occur. Both200 m and 100 km observations were compared with the nudged simulations fromthe National Center for Atmospheric Research (NCAR) Community AtmosphereModel version 6 (CAM6). Simulated aerosol indirect effects are weaker thanthe observations for both larger and smaller aerosols for in situ cirrus,while the simulated aerosol indirect effects are closer to observations inconvective cirrus. The results also indicate that simulations overestimatehomogeneous freezing, underestimate heterogeneous nucleation andunderestimate the continuous formation and growth of ice crystals as cirrusclouds evolve. Observations show positive correlations of IWC, Ni and icecrystal mean diameter (Di) with respect to Na in both the Northern and SouthernHemisphere (NH and SH), while the simulations show negative correlations inthe SH. The observations also show higher increases of IWC and Ni in the SHunder the same increase of Na than those shown in the NH, indicating highersensitivity of cirrus microphysical properties to increases of Na in the SHthan the NH. The simulations underestimate IWC by a factor of 3–30 in theearly/later growth phase, indicating that the low bias of simulated IWC wasdue to insufficient continuous ice particle formation and growth. Sucha hypothesis is consistent with the model biases of lower frequencies of icesupersaturation and lower vertical velocity standard deviation in theearly/later growth phases. Overall, these findings show that aircraftobservations can capture both heterogeneous and homogeneous nucleation, andtheir contributions vary as cirrus clouds evolve. Future model developmentis also recommended to evaluate and improve the representation of watervapor and vertical velocity on the sub-grid scale to resolve theinsufficient ice particle formation and growth after the initial nucleationevent.more » « less