Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 16, 2025
-
How can a social planner adaptively incentivize selfish agents who are learning in a strategic environment to induce a socially optimal outcome in the long run? We propose a two-timescale learning dynamics to answer this question in games. In our learning dynamics, players adopt a class of learning rules to update their strategies at a faster timescale, while a social planner updates the incentive mechanism at a slower timescale. In particular, the update of the incentive mechanism is based on each player’s externality, which is evaluated as the difference between the player’s marginal cost and the society’s marginal cost in each time step. We show that any fixed point of our learning dynamics corresponds to the optimal incentive mechanism such that the corresponding Nash equilibrium also achieves social optimality. We also provide sufficient conditions for the learning dynamics to converge to a fixed point so that the adaptive incentive mechanism eventually induces a socially optimal outcome. Finally, as an example, we demonstrate that the sufficient conditions for convergence are satisfied in Cournot competition with finite players.more » « less
-
Min-max optimization is emerging as a key framework for analyzing problems of robustness to strategically and adversarially generated data. We propose the random reshuffling-based gradient-free Optimistic Gradient Descent-Ascent algorithm for solving convex-concave min-max problems with finite sum structure. We prove that the algorithm enjoys the same convergence rate as that of zeroth-order algorithms for convex minimization problems. We deploy the algorithm to solve the distributionally robust strategic classification problem, where gradient information is not readily available, by reformulating the latter into a finite dimensional convex concave min-max problem. Through illustrative simulations, we observe that our proposed approach learns models that are simultaneously robust against adversarial distribution shifts and strategic decisions from the data sources, and outperforms existing methods from the strategic classification literature.more » « less