skip to main content

Search for: All records

Creators/Authors contains: "Mahlke, Scott"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Autonomous vehicles (AVs) are on the verge of changing the transportation industry. Despite the fast development of autonomous driving systems (ADSs), they still face safety and security challenges. Current defensive approaches usually focus on a narrow objective and are bound to specific platforms, making them difficult to generalize. To solve these limitations, we propose AVMaestro, an efficient and effective policy enforcement framework for full-stack ADSs. AVMaestro includes a code instrumentation module to systematically collect required information across the entire ADS, which will then be feed into a centralized data examination module, where users can utilize the global information to deploy defensive methods to protect AVs from various threats. AVMaestro is evaluated on top of Apollo-6.0 and experimental results confirm that it can be easily incorporated into the original ADS with almost negligible run-time delay. We further demonstrate that utilizing the global information can not only improve the accuracy of existing intrusion detection methods, but also potentially inspire new security applications.
  2. Autonomous vehicle (AV) software systems are emerging to enable rapidly developed self-driving functionalities. Since such systems are responsible for safety-critical decisions, it is necessary to secure them in face of cyber attacks. Through an empirical study of representative AV software systems Baidu Apollo and Autoware, we discover a common over-privilege problem with the publish-subscribe communication model widely adopted by AV systems: due to the coarse-grained message design for the publish-subscribe communication, some message fields are over-granted with publish/subscribe permissions. To comply with the least-privilege principle and reduce the attack surface resulting from such problem, we argue that the publish/subscribe permissions should be defined and enforced at the granularity of message fields instead of messages. To systematically address such publish-subscribe over-privilege problems, we present AVGuardian, a system that includes (1) a static analysis tool that detects over-privilege instances in AV software and generates the corresponding access control policies at the message field granularity, and (2) a low-overhead, module-transparent, runtime publish/subscribe permission policy enforcement mechanism to perform online policy violation detection and prevention. Using our detection tool, we are able to automatically detect 581 over-privilege instances in total in Baidu Apollo. To demonstrate the severity, we further constructed several concrete exploits thatmore »can lead to vehicle collision and identity theft for AV owners, which have been reported to Baidu Apollo and confirmed as valid. For defense, we prototype and evaluate the policy enforcement mechanism, and find that it has very low overhead, does not affect original AV decision logic, and also is resilient to message replay attacks.« less