skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Maity, Arka"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. attributed to loss of load carrying capacity of the individual members. Dominant failure modes in structural steel members include interactions between inelastic lateral torsional buckling, global buckling, and local buckling (referred to as Interactive Buckling). Accurate performance assessment of steel moment frames highly relies on the accuracy of the model-based simulations of such limit states. Commonly used concentrated hinge and fiber-based models fail to address the physics of this response leading to inaccurate performance assessment of structures. A nonlinear displacement-based fiber element [named Torsional Fiber Element (TFE)] to simulate monotonic and cyclic interactive buckling in steel members is proposed and implemented on OpenSees (an open-source finite element software). The element includes St. Venant as well as warping torsion response that are essential for lateral torsional buckling response in a wide-flange I-section, through enriched displacement fields and strain interpolation. Response of local buckling is represented in a quantitative manner using a novel multi-axial constitutive relationship with calibration of an effective softening behavior in the post-buckling response. Mesh dependency issue related to the softening material model is also discussed and addressed through a proposed non-local strain measure. The efficacy of the model is assessed through several continuum finite element simulations and experimental data. 
    more » « less