skip to main content

Search for: All records

Creators/Authors contains: "Makri, Nancy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Conical intersections in two-state systems require a coordinate-dependent coupling. This paper identifies and investigates conical intersections in cyclic tight-binding system-bath Hamiltonians with an odd number of sites and a constant site-to-site coupling. In the absence of bath degrees of freedom, such tight-binding systems with a positive coupling parameter exhibit electronic frustration and a doubly-degenerate ground state. When these systems interact with a harmonic bath, the degeneracy becomes a conical intersection between the adiabatic ground and first excited states. Under weak system-bath coupling, overlapping wavefunctions associated with different sites give rise to distinct pathways with interfering geometric phases, which lead to considerably slower transfer dynamics. The effect is most pronounced in the presence of low-temperature dissipative baths characterized by a continuous spectral density. It is found that the transfer dynamics and equilibration time of a cyclic dissipative three-site system with a positive coupling exceeds that of a similar three-site system with a negative coupling, as well as that of cyclic four-site systems, by an order of magnitude.

  2. Some topological features of multisite Hamiltonians consisting of harmonic potential surfaces with constant site-to-site couplings are discussed. Even in the absence of Duschinsky rotation, such a Hamiltonian assumes the system-bath form only if severe constraints exist. The simplest case of a common bath that couples to all sites is realized when the potential minima are collinear. The bath reorganization energy increases quadratically with site distance in this case. Another frequently encountered situation involves exciton-vibration coupling in molecular aggregates, where the intramolecular normal modes of the monomers give rise to local harmonic potentials. In this case, the reorganization energy accompanying excitation transfer is independent of site-to-site separation, thus this situation cannot be described by the usual system-bath Hamiltonian. A vector system-bath representation is introduced, which brings the exciton-vibration Hamiltonian in system-bath form. In this, the system vectors specify the locations of the potential minima, which in the case of identical monomers lie on the vertices of a regular polyhedron. By properly choosing the system vectors, it is possible to couple each bath to one or more sites and to specify the desired initial density. With a collinear choice of system vectors, the coupling reverts to the simple form of a commonmore »bath. The compact form of the vector system-bath coupling generalizes the dissipative tight-binding model to account for local, correlated, and common baths. The influence functional for the vector system-bath Hamiltonian is obtained in a compact and simple form.

    « less
    Free, publicly-accessible full text available April 11, 2024
  3. Free, publicly-accessible full text available June 30, 2023
  4. Excitation energy transfer (EET) is fundamental to many processes in chemical and biological systems and carries significant implications for the design of materials suitable for efficient solar energy harvest and transport. This review discusses the role of intramolecular vibrations on the dynamics of EET in nonbonded molecular aggregates of bacteriochlorophyll, a perylene bisimide, and a model system, based on insights obtained from fully quantum mechanical real-time path integral results for a Frenkel exciton Hamiltonian that includes all vibrational modes of each molecular unit at finite temperature. Generic trends, as well as features specific to the vibrational characteristics of the molecules, are identified. Weak exciton-vibration (EV) interaction leads to compact, near-Gaussian densities on each electronic state, whose peak follows primarily a classical trajectory on a torus, while noncompact densities and nonlinear peak evolution are observed with strong EV coupling. Interaction with many intramolecular modes and increasing aggregate size smear, shift, and damp these dynamical features.