Some topological features of multisite Hamiltonians consisting of harmonic potential surfaces with constant site-to-site couplings are discussed. Even in the absence of Duschinsky rotation, such a Hamiltonian assumes the system-bath form only if severe constraints exist. The simplest case of a common bath that couples to all sites is realized when the potential minima are collinear. The bath reorganization energy increases quadratically with site distance in this case. Another frequently encountered situation involves exciton-vibration coupling in molecular aggregates, where the intramolecular normal modes of the monomers give rise to local harmonic potentials. In this case, the reorganization energy accompanying excitation transfer is independent of site-to-site separation, thus this situation cannot be described by the usual system-bath Hamiltonian. A vector system-bath representation is introduced, which brings the exciton-vibration Hamiltonian in system-bath form. In this, the system vectors specify the locations of the potential minima, which in the case of identical monomers lie on the vertices of a regular polyhedron. By properly choosing the system vectors, it is possible to couple each bath to one or more sites and to specify the desired initial density. With a collinear choice of system vectors, the coupling reverts to the simple form of a common bath. The compact form of the vector system-bath coupling generalizes the dissipative tight-binding model to account for local, correlated, and common baths. The influence functional for the vector system-bath Hamiltonian is obtained in a compact and simple form.
more »
« less
Electronic frustration, Berry’s phase interference and slow dynamics in some tight-binding systems coupled to harmonic baths
Abstract Conical intersections in two-state systems require a coordinate-dependent coupling. This paper identifies and investigates conical intersections in cyclic tight-binding system-bath Hamiltonians with an odd number of sites and a constant site-to-site coupling. In the absence of bath degrees of freedom, such tight-binding systems with a positive coupling parameter exhibit electronic frustration and a doubly-degenerate ground state. When these systems interact with a harmonic bath, the degeneracy becomes a conical intersection between the adiabatic ground and first excited states. Under weak system-bath coupling, overlapping wavefunctions associated with different sites give rise to distinct pathways with interfering geometric phases, which lead to considerably slower transfer dynamics. The effect is most pronounced in the presence of low-temperature dissipative baths characterized by a continuous spectral density. It is found that the transfer dynamics and equilibration time of a cyclic dissipative three-site system with a positive coupling exceeds that of a similar three-site system with a negative coupling, as well as that of cyclic four-site systems, by an order of magnitude.
more »
« less
- Award ID(s):
- 1955302
- PAR ID:
- 10401425
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics A: Mathematical and Theoretical
- Volume:
- 56
- Issue:
- 14
- ISSN:
- 1751-8113
- Page Range / eLocation ID:
- Article No. 144001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Optical cavities hold great promise to manipulate and control the photochemistry of molecules. We demonstrate how molecular photochemical processes can be manipulated by strong light–matter coupling. For a molecule with an inherent conical intersection, optical cavities can induce significant changes in the nonadiabatic dynamics by either splitting the pristine conical intersections into two novel polaritonic conical intersections or by creating light-induced avoided crossings in the polaritonic surfaces. This is demonstrated by exact real-time quantum dynamics simulations of a three-state two-mode model of pyrazine strongly coupled to a single cavity photon mode. We further explore the effects of external environments through dissipative polaritonic dynamics computed using the hierarchical equation of motion method. We find that cavity-controlled photochemistry can be immune to external environments. We also demonstrate that the polariton-induced changes in the dynamics can be monitored by transient absorption spectroscopy.more » « less
-
null (Ed.)We investigate the time evolution of the reduced density matrix (RDM) and its purity in the dynamics of a two-level system coupled to a dissipative harmonic bath, when the system is initially placed in one of its eigenstates. We point out that the symmetry of the initial condition confines the motion of the RDM elements to a one-dimensional subspace and show that the purity always goes through its maximally mixed value at some time during relaxation, but subsequently recovers and (under low-temperature, weakly dissipative conditions) can rise to values that approach unity. These behaviors are quantified through accurate path integral calculations. Under low-temperature, weakly dissipative conditions, we observe unusual, nonmonotonic population dynamics when the two-level system is initially placed in its ground state. We also analyze the origin of the system-bath interactions responsible for the nonmonotonic behavior of purity during relaxation. Our results show that classical dephasing processes arising from site level fluctuations lead to a monotonic decay of purity, and that the quantum mechanical decoherence events associated with spontaneous phonon emission are responsible for the subsequent recovery of purity. Last, we show that coupling with a low-temperature bath can purify a mixed two-level system. In the case of the maximally mixed initial RDM, the purity increases monotonically even during short time.more » « less
-
The excited-state dynamics of o-nitrophenol have been explored using trajectory surface hopping nonadiabatic dynamics combined with floating occupation molecular orbital complete active space configuration interaction. We focus on the effect of excitation energy on the subsequent dynamics. The absorption spectrum of o-nitrophenol has two peaks, centered at 3.9 eV (∼320 nm) and 5.1 eV (∼240 nm), and we performed dynamics starting from each of these peaks. The results show that even though the relaxation time constants are similar for the two excitation windows, the underlying dynamics are different. When exciting to the low energy peak, the dynamics are dominated by intramolecular proton transfer followed by internal conversion to the ground state, while exciting to the high-energy peak leads to fast internal conversion to the first excited state and slower decay to the ground state. In this case, intramolecular proton transfer does not occur as frequently, and many trajectories decay to the ground state through conical intersections without proton transfer. By calculating spin–orbit coupling values along the trajectories, we also show that intersystem crossing is possible. Based on the Landau–Zener probability formula, we estimate that there is about a 30%–40% probability that intersystem crossing will occur within 1 ps.more » « less
-
Accurate quantum dynamics simulations of nonadiabatic processes are important for studies of electron transfer, energy transfer, and photochemical reactions in complex systems. In this comparative study, we benchmark various approximate nonadiabatic dynamics methods with mapping variables against numerically exact calculations based on the tensor-train (TT) representation of high-dimensional arrays, including TT-KSL for zero-temperature dynamics and TT-thermofield dynamics for finite-temperature dynamics. The approximate nonadiabatic dynamics methods investigated include mixed quantum–classical Ehrenfest mean-field and fewest-switches surface hopping, linearized semiclassical mapping dynamics, symmetrized quasiclassical dynamics, the spin-mapping method, and extended classical mapping models. Different model systems were evaluated, including the spin-boson model for nonadiabatic dynamics in the condensed phase, the linear vibronic coupling model for electronic transition through conical intersections, the photoisomerization model of retinal, and Tully’s one-dimensional scattering models. Our calculations show that the optimal choice of approximate dynamical method is system-specific, and the accuracy is sensitively dependent on the zero-point-energy parameter and the initial sampling strategy for the mapping variables.more » « less
An official website of the United States government
