skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malek, Sam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Websites are integral to people’s daily lives, with billions in use today. However, due to limited awareness of accessibility and its guidelines, developers often release web apps that are inaccessible to people with disabilities, who make up around 16% of the global population. To ensure a baseline of accessibility, software engineers rely on automated checkers that assess a webpage’s compliance based on predefined rules. Unfortunately, these tools typically cover only a small subset of accessibility guidelines and often overlook violations that require a semantic understanding of the webpage. The advent of generative AI, known for its ability to comprehend textual and visual content, has created new possibilities for detecting accessibility violations. We began by studying the most widely used guideline, WCAG, to determine the testable success criteria that generative AI could address. This led to the development of an automated tool called GenA11y, which extracts elements from a page related to each success criterion and inputs them into an LLM prompted to detect accessibility issues on the web. Evaluations of GenA11y showed its effectiveness, with a precision of 94.5% and a recall of 87.61%. Additionally, when tested on real websites, GenA11y identified an average of eight more types of accessibility violations than the combination of existing tools. 
    more » « less
    Free, publicly-accessible full text available June 19, 2026
  2. Free, publicly-accessible full text available April 26, 2026
  3. Free, publicly-accessible full text available April 26, 2026
  4. The pervasiveness of mobile apps in everyday life necessitates robust testing strategies to ensure quality and efficiency, especially through end-to-end usage-based tests for mobile apps' user interfaces (UIs). However, manually creating and maintaining such tests can be costly for developers. Since many apps share similar functionalities beneath diverse UIs, previous works have shown the possibility of transferring UI tests across different apps within the same domain, thereby eliminating the need for writing the tests manually. However, these methods have struggled to accommodate real-world variations, often facing limitations in scenarios where source and target apps are not very similar or fail to accurately transfer test oracles. This paper introduces an innovative technique, LLMigrate, which leverages Large Language Models (LLMs) to efficiently transfer usage-based UI tests across mobile apps. Our experimental evaluation shows LLMigrate can achieve a 97.5% success rate in automated test transfer, reducing the manual effort required to write tests from scratch by 91.1%. This represents an improvement of 9.1% in success rate and 38.2% in effort reduction compared to the best-performing prior technique, setting a new benchmark for automated test transfer. 
    more » « less
    Free, publicly-accessible full text available June 22, 2026
  5. Free, publicly-accessible full text available December 1, 2025
  6. Despite the availability of numerous automatic accessibility testing solutions, web accessibility issues persist on many websites. Moreover, there is a lack of systematic evaluations of the efficacy of current accessibility testing tools. To address this gap, we present the first mutation analysis framework, called Ma11y, designed to assess web accessibility testing tools. Ma11y includes 25 mutation operators that intentionally violate various accessibility principles and an automated oracle to determine whether a mutant is detected by a testing tool. Evaluation on real-world websites demonstrates the practical applicability of the mutation operators and the framework’s capacity to assess tool performance. Our results demonstrate that the current tools cannot identify nearly 50% of the accessibility bugs injected by our framework, thus underscoring the need for the development of more effective accessibility testing tools. Finally, the framework’s accuracy and performance attest to its potential for seamless and automated application in practical settings 
    more » « less
  7. Android is a highly fragmented platform with a diverse set of devices and users. To support the deployment of apps in such a heterogeneous setting, Android has introduceddynamic delivery—a new model of software deployment in which optional, device- or user-specific functionalities of an app, calledDynamic Feature Modules (DFMs), can be installed, as needed, after the app’s initial installation. This model of app deployment, however, has exacerbated the challenges of properly testing Android apps. In this article, we first describe the results of an extensive study in which we formalized a defect model representing the various conditions under which DFM installations may fail. We then presentDeltaDroid—a tool aimed at assisting the developers with validating dynamic delivery behavior in their apps by augmenting their existing test suite. Our experimental evaluation using real-world apps corroboratesDeltaDroid’s ability to detect many crashes and unexpected behaviors that the existing automated testing tools cannot reveal. 
    more » « less
  8. Core features (functionalities) of an app can often be accessed and invoked in several ways, i.e., through alternative sequences of user-interface (UI) interactions. Given the manual effort of writing tests, developers often only consider the typical way of invoking features when creating the tests (i.e., the “sunny day scenario”). However, the alternative ways of invoking a feature are as likely to be faulty. These faults would go undetected without proper tests. To reduce the manual effort of creating UI tests and help developers more thoroughly examine the features of apps, we presentRoute, an automated tool for feature-based UI test augmentation for Android apps.Routefirst takes a UI test and the app under test as input. It then applies novel heuristics to find additional high-quality UI tests, consisting of both inputs and assertions, that verify the same feature as the original test in alternative ways. Application ofRouteon several dozen tests for popular apps on Google Play shows that for 96% of the existing tests,Routewas able to generate at least one alternative test. Moreover, the fault detection effectiveness of augmented test suites in our experiments showed substantial improvements of up to 39% over the original test suites. 
    more » « less