- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Malen, Greg (2)
-
Catanzaro, Michael J. (1)
-
Curry, Justin M. (1)
-
Fasy, Brittany Terese (1)
-
Lazovskis, Jānis (1)
-
Manin, Fedor (1)
-
Riess, Hans (1)
-
Roldán, Érika (1)
-
Wang, Bei (1)
-
Zabka, Matthew (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
What is the maximum number of holes enclosed by a $$d$$-dimensional polyomino built of $$n$$ tiles? Represent this number by $$f_d(n)$$. Recent results show that $$f_2(n)/n$$ converges to $1/2$. We prove that for all $$d \geq 2$$ we have $$f_d(n)/n \to (d-1)/d$$ as $$n$$ goes to infinity. We also construct polyominoes in $$d$$-dimensional tori with the maximal possible number of holes per tile. In our proofs, we use metaphors from error-correcting codes and dynamical systems.more » « less
-
Catanzaro, Michael J.; Curry, Justin M.; Fasy, Brittany Terese; Lazovskis, Jānis; Malen, Greg; Riess, Hans; Wang, Bei; Zabka, Matthew (, Journal of Applied and Computational Topology)
An official website of the United States government
