skip to main content


Search for: All records

Creators/Authors contains: "Malkan, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the second iteration of thecaramel-gascode, an empirical model of the broad-line region (BLR) gas density field. Building on the initial development and testing ofcaramel-gas, we expand the meaning of the model parameterα, which initially represented only the power-law index of the dependency of emissivity on radial distance. In this work, we test a more generalized radial power-law index,α, that also includes a description of the effective emitting size(s) of the BLR structure as a function of radial distance. We select a sample of 10 active galactic nuclei (AGN) from three different Lick AGN Monitoring Project campaigns to further validate thecaramel-gascode and test the generalized radial power-law index,α. Our results confirm that thecaramel-gasresults are in general agreement with the published results determined using the originalcaramelcode, further demonstrating that our forward modeling method is robust. We find that a positive radial power-law index is generally favored and propose three possible scenarios: (i) the BLR structure has increasing effective emitting size(s) at larger radial distances from the central source, (ii) emission is concentrated at the outer edges of the BLR, and (iii) stronger theoretical assumptions are needed to break the degeneracies inherent to the interpretation of reverberation mapping data in terms of underlying gas properties.

     
    more » « less
  2. Abstract

    Observed scatter in the Lyαopacity of quasar sightlines atz< 6 has motivated measurements of the correlation between Lyαopacity and galaxy density, as models that predict this scatter make strong and sometimes opposite predictions for how they should be related. Our previous work associated two highly opaque Lyαtroughs atz∼ 5.7 with a deficit of Lyαemitting galaxies (LAEs). In this work, we survey two of the most highly transmissive lines of sight at this redshift toward thez= 6.02 quasar SDSS J1306+0356 and thez= 6.17 quasar PSO J359-06. We find that both fields are underdense in LAEs within 10h−1Mpc of the quasar sightline, somewhat less extensive than underdensities associated with Lyαtroughs. We combine our observations with three additional fields from the literature and find that while fields with extreme opacities are generally underdense, moderate opacities span a wider density range. The results at high opacities are consistent with models that invoke UV background fluctuations and/or late reionization to explain the observed scatter in intergalactic medium (IGM) Lyαopacities. There is tension at low opacities, however, as the models tend to associate lower IGM Lyαopacities with higher densities. Although the number of fields surveyed is still small, the low-opacity results may support a scenario in which the ionizing background in low-density regions increases more rapidly than some models suggest after becoming ionized. Elevated gas temperatures from recent reionization may also be making these regions more transparent.

     
    more » « less
  3. Abstract

    We present the main results from a long-term reverberation mapping campaign carried out for the Seoul National University AGN Monitoring Project (SAMP). High-quality data were obtained during 2015–2021 for 32 luminous active galactic nuclei (AGNs; i.e., continuum luminosity in the range of 1044–46erg s−1) at a regular cadence, of 20–30 days for spectroscopy and 3–5 days for photometry. We obtain time lag measurements between the variability in the Hβemission and the continuum for 32 AGNs; 25 of those have the best lag measurements based on our quality assessment, examining correlation strength and the posterior lag distribution. Our study significantly increases the current sample of reverberation-mapped AGNs, particularly at the moderate-to-high-luminosity end. Combining our results with literature measurements, we derive an Hβbroadline region size–luminosity relation with a shallower slope than reported in the literature. For a given luminosity, most of our measured lags are shorter than the expectations, implying that single-epoch black hole mass estimators based on previous calibrations could suffer large systematic uncertainties.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  4. Abstract

    We present the first spatially resolved maps of gas-phase metallicity for two dust-obscured star-forming galaxies atz∼ 4, from the JWST TEMPLATES Early Release Science program, derived from NIRSpec integral field unit spectroscopy of the Hαand [Nii] emission lines. Empirical optical line calibrations are used to determine that the sources are globally enriched to near-solar levels. While one source shows elevated [N ii]/Hαratios and broad Hαemission consistent with the presence of an active galactic nucleus in a ≳1 kpc region, we argue that both systems have already undergone significant metal enrichment as a result of their extremely high star formation rates. Utilizing Atacama Large Millimeter/submillimeter Array rest-frame 380μm continuum and [Ci](3P23P1) line maps we compare the spatial variation of the metallicity and gas-to-dust ratio in the two galaxies, finding the two properties to be anticorrelated on highly resolved spatial scales, consistent with various literature studies ofz∼ 0 galaxies. The data are indicative of the enormous potential of JWST to probe the enrichment of the interstellar medium on ∼kpc scales in extremely dust-obscured systems atz∼ 4 and beyond.

     
    more » « less
  5. Abstract The fourth Fermi Large Area Telescope catalog (4FGL) contains 5064 γ -ray sources detected at high significance, but 26% of them still lack associations at other wavelengths. The SPT-SZ survey, conducted between 2008 and 2011 with the South Pole Telescope (SPT), covers 2500 deg 2 of the southern sky in three millimeter-wavelength (mm) bands and was used to construct a catalog of nearly 5000 emissive sources. In this study, we introduce a new cross-matching scheme to search for multiwavelength counterparts of extragalactic γ -ray sources using a mm catalog. We apply a Poissonian probability to evaluate the rate of spurious false associations and compare the multiwavelength associations from the radio, mm, near-infrared, and X-ray with 4FGL γ -ray sources. In the SPT-SZ survey field, 85% of 4FGL sources are associated with mm counterparts. These mm sources include 94% of previously associated 4FGL sources and 56% of previously unassociated 4FGL sources. The latter group contains 40 4FGL sources for which SPT has provided the first identified counterparts. Nearly all of the SPT-associated 4FGL sources can be described as flat-spectrum radio quasars or blazars. We find that the mm band is the most efficient wavelength for detecting γ -ray blazars when considering both completeness and purity. We also demonstrate that the mm band correlates better to the γ -ray band than the radio or X-ray bands. With the next generation of CMB experiments, this technique can be extended to greater sensitivities and more sky area to further complete the identifications of the remaining unknown γ -ray blazars. 
    more » « less
  6. ABSTRACT

    We present a Bayesian inference on the neutral hydrogen fraction of the intergalactic medium (IGM), $\overline{x}_{\small HI}$, at z ∼ 6–8 using the properties of Lyman break galaxies (LBGs) during the epoch of reionization. We use large samples of LBG candidates at 5.5 ≤ z ≤ 8.2 with spectroscopy from Keck/DEIMOS and Keck/MOSFIRE. For each galaxy, we incorporate either the Lyman-α (Lyα) equivalent width (EW) for detections or the EW limit spectrum for non-detections to parametrize the EW distribution at various ultraviolet brightnesses for a given redshift. Using our reference sample of galaxy candidates from the ionized universe at z ∼ 6.0, we are able to infer $\overline{x}_{\small HI}$ at two redshifts: z ∼ 6.7 and z ∼ 7.6. This work includes intrinsically faint, gravitationally lensed galaxies at z ∼ 6.0 in order to constrain the intrinsic faint-end Lyα EW distribution and provide a comparable population of galaxies to counterparts in our sample that are at higher redshift. The inclusion of faint galaxy candidates, in addition to a more sophisticated modelling framework, allows us to better isolate effects of the interstellar medium and circumgalactic medium on the observed Lyα distribution from those of the IGM. We infer an upper limit of $\overline{x}_{\small HI}$ ≤ 0.25 (0.44) at z = 6.7 ± 0.2 and a neutral fraction of $\overline{x}_{\small HI}$ = $0.83^{+0.08}_{-0.11}$ (0.83$^{+0.11}_{-0.21}$) at z = 7.6 ± 0.6, both within 68 per cent (95 per cent) uncertainty, results that favour a moderately late and fairly rapid reionization.

     
    more » « less
  7. Abstract

    We present James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec) integral field spectroscopy of the nearby luminous infrared galaxy NGC 7469. We take advantage of the high spatial/spectral resolution and wavelength coverage of JWST/NIRSpec to study the 3.3μm neutral polycyclic aromatic hydrocarbon (PAH) grain emission on ∼200 pc scales. A clear change in the average grain properties between the star-forming ring and the central AGN is found. Regions in the vicinity of the AGN, with [Neiii]/[Neii] > 0.25, tend to have larger grain sizes and lower aliphatic-to-aromatic (3.4/3.3) ratios, indicating that smaller grains are preferentially removed by photodestruction in the vicinity of the AGN. PAH emission at the nucleus is weak and shows a low 11.3/3.3 PAH ratio. We find an overall suppression of the total PAH emission relative to the ionized gas in the central 1 kpc region of the AGN in NGC 7469 compared to what has been observed with Spitzer on 3 kpc scales. However, the fractional 3.3μm–to–total PAH power is enhanced in the starburst ring, possibly due to a variety of physical effects on subkiloparsec scales, including recurrent fluorescence of small grains or multiple photon absorption by large grains. Finally, the IFU data show that while the 3.3μm PAH-derived star formation rate (SFR) in the ring is 27% higher than that inferred from the [Neii] and [Neiii] emission lines, the integrated SFR derived from the 3.3μm feature would be underestimated by a factor of 2 due to the deficit of PAHs around the AGN, as might occur if a composite system like NGC 7469 were to be observed at high redshift.

     
    more » « less
  8. Abstract We report the first spatially resolved measurements of gas-phase metallicity radial gradients in star-forming galaxies in overdense environments at z ≳ 2. The spectroscopic data are acquired by the MAMMOTH-Grism survey, a Hubble Space Telescope (HST) cycle 28 medium program. This program is obtaining 45 orbits of WFC3/IR grism spectroscopy in the density peak regions of three massive galaxy protoclusters (BOSS 1244, BOSS 1542, and BOSS 1441) at z = 2–3. Our sample in the BOSS 1244 field consists of 20 galaxies with stellar mass ranging from 10 9.0 to 10 10.3 M ⊙ , star formation rate (SFR) from 10 to 240 M ⊙ yr −1 , and global gas-phase metallicity ( 12 + log ( O / H ) ) from 8.2 to 8.6. At 1 σ confidence level, 2/20 galaxies in our sample show positive (inverted) gradients—the relative abundance of oxygen increasing with galactocentric radius, opposite the usual trend. Furthermore, 1/20 shows negative gradients, and 17/20 are consistent with flat gradients. This high fraction of flat/inverted gradients is uncommon in simulations and previous observations conducted in blank fields at similar redshifts. To understand this, we investigate the correlations among various observed properties of our sample galaxies. We find an anticorrelation between metallicity gradient and global metallicity of our galaxies residing in extreme overdensities, and a marked deficiency of metallicity in our massive galaxies as compared to their coeval field counterparts. We conclude that the cold-mode gas accretion plays an active role in shaping the chemical evolution of galaxies in the protocluster environments, diluting their central chemical abundance, and flattening/inverting their metallicity gradients. 
    more » « less
  9. Abstract The observed large-scale scatter in Ly α opacity of the intergalactic medium at z < 6 implies large fluctuations in the neutral hydrogen fraction that are unexpected long after reionization has ended. A number of models have emerged to explain these fluctuations that make testable predictions for the relationship between Ly α opacity and density. We present selections of z = 5.7 Ly α -emitting galaxies (LAEs) in the fields surrounding two highly opaque quasar sightlines with long Ly α troughs. The fields lie toward the z = 6.0 quasar ULAS J0148+0600, for which we reanalyze previously published results using improved photometric selection, and toward the z = 6.15 quasar SDSS J1250+3130, for which results are presented here for the first time. In both fields, we report a deficit of LAEs within 20 h −1 Mpc of the quasar. The association of highly opaque sightlines with galaxy underdensities in these two fields is consistent with models in which the scatter in Ly α opacity is driven by large-scale fluctuations in the ionizing UV background or by an ultra-late reionization that has not yet concluded at z = 5.7. 
    more » « less