skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Mamykina, Lena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning macronutrient assessment skills can support improved health outcomes and overall wellbeing. We conducted two Mechanical Turk studies to investigate how users might benefit from the crowd's input in macronutrient assessment education. We first determined whether the wisdom of the crowd alone would provide users with enough insight to arrive at accurate macronutrient estimates. Next, we tested two methods of teaching macronutrient assessment skills (Comparison and Decomposition) and analyzed their effectiveness. Results from these studies indicate that while the crowd alone may not be sufficient to support this type of education, users may yet benefit from access to community-generated photos and labels while they use either the Comparison or Decomposition strategy. 
    more » « less
  2. When people receive advice while making difficult decisions, they often make better decisions in the moment and also increase their knowledge in the process. However, such incidental learning can only occur when people cognitively engage with the information they receive and process this information thoughtfully. How do people process the information and advice they receive from AI, and do they engage with it deeply enough to enable learning? To answer these questions, we conducted three experiments in which individuals were asked to make nutritional decisions and received simulated AI recommendations and explanations. In the first experiment, we found that when people were presented with both a recommendation and an explanation before making their choice, they made better decisions than they did when they received no such help, but they did not learn. In the second experiment, participants first made their own choice, and only then saw a recommendation and an explanation from AI; this condition also resulted in improved decisions, but no learning. However, in our third experiment, participants were presented with just an AI explanation but no recommendation and had to arrive at their own decision. This condition led to both more accurate decisions and learning gains. We hypothesize that learning gains in this condition were due to deeper engagement with explanations needed to arrive at the decisions. This work provides some of the most direct evidence to date that it may not be sufficient to provide people with AI-generated recommendations and explanations to ensure that people engage carefully with the AI-provided information. This work also presents one technique that enables incidental learning and, by implication, can help people process AI recommendations and explanations more carefully. 
    more » « less
  3. Background Health care and well-being are 2 main interconnected application areas of conversational agents (CAs). There is a significant increase in research, development, and commercial implementations in this area. In parallel to the increasing interest, new challenges in designing and evaluating CAs have emerged. Objective This study aims to identify key design, development, and evaluation challenges of CAs in health care and well-being research. The focus is on the very recent projects with their emerging challenges. Methods A review study was conducted with 17 invited studies, most of which were presented at the ACM (Association for Computing Machinery) CHI 2020 conference workshop on CAs for health and well-being. Eligibility criteria required the studies to involve a CA applied to a health or well-being project (ongoing or recently finished). The participating studies were asked to report on their projects’ design and evaluation challenges. We used thematic analysis to review the studies. Results The findings include a range of topics from primary care to caring for older adults to health coaching. We identified 4 major themes: (1) Domain Information and Integration, (2) User-System Interaction and Partnership, (3) Evaluation, and (4) Conversational Competence. Conclusions CAs proved their worth during the pandemic as health screening tools, and are expected to stay to further support various health care domains, especially personal health care. Growth in investment in CAs also shows the value as a personal assistant. Our study shows that while some challenges are shared with other CA application areas, safety and privacy remain the major challenges in the health care and well-being domains. An increased level of collaboration across different institutions and entities may be a promising direction to address some of the major challenges that otherwise would be too complex to be addressed by the projects with their limited scope and budget. 
    more » « less