skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Manepalli, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Process-based numerical simulation, includ- ing for climate modeling applications, is compute- and resource-intensive, requiring extensive customization and hand-engineering for encoding governing equations and other domain knowledge. On the other hand, modern deep learning employs a much simplified and efficient computational workflow, and has been showing impres- sive results across myriad applications in computational sciences. In this work, we investigate the potential of deep generative learning models, specifically conditional Gen- erative Adversarial Networks (cGANs), to simulate the output of a physics-based model of the spatial distribution of the water content of mountain snowpack, or snow water equivalent (SWE). We show preliminary results indicating that the cGANs model is able to learn map- pings between meteorological forcing (e.g., minimum and maximum temperature, wind speed, net radiation, and precipitation) and SWE output. Moreover, informing the model with simple domain-inspired physical constraints results in higher model accuracy, and lower training time. Thus Physics-Informed cGANs provide a means for fast and accurate SWE modeling that can have significant impact in a variety of applications (e.g., hydropower forecasting, agriculture, and water supply management). 
    more » « less