skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Manimaran, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the key areas in which electronic cooling research has been focusing on, is addressing the issue of non-uniform at package level. This challenge has incited the use of numerous temperature sensing mechanisms for dynamic cooling of electronic components. What dynamic liquid cooling effectively does is, use feedback from sensors as inputs for the pumps, supplying more amounts of fluid to parts of the electronics that is warmer while supplying minimal fluid to the parts of the electronics that are relatively cooler. A novel approach to address uneven heating in a liquid cooled system is the use of a temperature sensing flow control device that can control flow rate based on temperature. The necessity of numerous temperature and pressure sensors, a suitable control system and the maintenance and reliability issues that they present, can be significantly minimized with the use of a self sensing and controlling flow control device. This paper looks at the flow analysis of a self-regulating flow control device (FCD) designed for electronic module for data center application. An axially rotating butterfly valve is used to regulate the flow rate of FCD. Linearization of the flow with respect to damper angle is studied by modifying the dimensional ratios of the rectangular cross section of the FCD. Pressure drop, and flow rate characterization is done for the FCD. 
    more » « less