skip to main content


Search for: All records

Creators/Authors contains: "Manjanna, Sandeep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change has increased the frequency and severity of extreme weather events such as hurricanes and winter storms. The complex interplay of floods with tides, runoff, and sediment creates additional hazards – including erosion and the undermining of urban infrastructure – consequently impacting the health of our rivers and ecosystems. Observations of these underwater phenomena are rare, because satellites and sensors mounted on aerial vehicles cannot penetrate the murky waters. Autonomous Surface Vehicles (ASVs) provides a means to track and map these complex and dynamic underwater phenomena. This work highlights preliminary results of high-resolution data gathering with ASVs, equipped with a suite of sensors capable of measuring physical and chemical parameters of the river. Measurements were acquired along the lower Schuylkill River in the Philadelphia area at high-tide and low-tide conditions. The data will be leveraged to improve our understanding of changes in bathymetry due to floods; the dynamics of mixing and stagnation zones and their impact on water quality; and the dynamics of suspension and resuspension of fine sediment. The data will also provide insight into the development of adaptive sampling strategies for ASVs that can maximize the information gain for future field experiments. 
    more » « less
  2. Physical sampling of water for off-site analysis is necessary for many applications like monitoring the quality of drinking water in reservoirs, understanding marine ecosystems, and measuring contamination levels in fresh-water systems. In this paper, the focus is on algorithms for efficient measurement and sampling using a multi-robot, data-driven, water-sampling behavior, where autonomous surface vehicles plan and execute water sampling using the chlorophyll density as a cue for plankton-rich water samples. We use two Autonomous Surface Vehicles (ASVs), one equipped with a water quality sensor and the other equipped with a water-sampling apparatus. The ASV with the sensor acts as an explorer, measuring and building a spatial map of chlorophyll density in the given region of interest. The ASV equipped with the water sampling apparatus makes decisions in real time on where to sample the water based on the suggestions made by the explorer robot. We evaluate the system in the context of measuring chlorophyll distributions. We do this both in simulation based on real geophysical data from MODIS measurements, and on real robots in a water reservoir. We demonstrate the effectiveness of the proposed approach in several ways including in terms of mean error in the interpolated data as a function of distance traveled. 
    more » « less
  3. This paper addresses distributed data sampling in marine environments using robotic devices. We present a method to strategically sample locally observable features using two classes of sensor platforms. Our system consists of a sophisticated autonomous surface vehicle (ASV) which strategically samples based on information provided by a team of inexpensive sensor nodes. The sensor nodes effectively extend the observational capabilities of the vehicle by capturing georeferenced samples from disparate and moving points across the region. The ASV uses this information, along with its own observations, to plan a path so as to sample points which it expects to be particularly informative. We compare our approach to a traditional exhaustive survey approach and show that we are able to effectively represent a region with less energy expenditure. We validate our approach through simulations and test the system on real robots in field. 
    more » « less