skip to main content


Title: Collaborative Sampling Using Heterogeneous Marine Robots Driven by Visual Cues
This paper addresses distributed data sampling in marine environments using robotic devices. We present a method to strategically sample locally observable features using two classes of sensor platforms. Our system consists of a sophisticated autonomous surface vehicle (ASV) which strategically samples based on information provided by a team of inexpensive sensor nodes. The sensor nodes effectively extend the observational capabilities of the vehicle by capturing georeferenced samples from disparate and moving points across the region. The ASV uses this information, along with its own observations, to plan a path so as to sample points which it expects to be particularly informative. We compare our approach to a traditional exhaustive survey approach and show that we are able to effectively represent a region with less energy expenditure. We validate our approach through simulations and test the system on real robots in field.  more » « less
Award ID(s):
1637876
NSF-PAR ID:
10127558
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Conference on Computer and Robot Vision (CRV)
Page Range / eLocation ID:
87 to 94
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Physical sampling of water for off-site analysis is necessary for many applications like monitoring the quality of drinking water in reservoirs, understanding marine ecosystems, and measuring contamination levels in fresh-water systems. In this paper, the focus is on algorithms for efficient measurement and sampling using a multi-robot, data-driven, water-sampling behavior, where autonomous surface vehicles plan and execute water sampling using the chlorophyll density as a cue for plankton-rich water samples. We use two Autonomous Surface Vehicles (ASVs), one equipped with a water quality sensor and the other equipped with a water-sampling apparatus. The ASV with the sensor acts as an explorer, measuring and building a spatial map of chlorophyll density in the given region of interest. The ASV equipped with the water sampling apparatus makes decisions in real time on where to sample the water based on the suggestions made by the explorer robot. We evaluate the system in the context of measuring chlorophyll distributions. We do this both in simulation based on real geophysical data from MODIS measurements, and on real robots in a water reservoir. We demonstrate the effectiveness of the proposed approach in several ways including in terms of mean error in the interpolated data as a function of distance traveled. 
    more » « less
  2. null (Ed.)
    There is an increasing demand for performing machine learning tasks, such as human activity recognition (HAR) on emerging ultra-low-power internet of things (IoT) platforms. Recent works show substantial efficiency boosts from performing inference tasks directly on the IoT nodes rather than merely transmitting raw sensor data. However, the computation and power demands of deep neural network (DNN) based inference pose significant challenges when executed on the nodes of an energy-harvesting wireless sensor network (EH-WSN). Moreover, managing inferences requiring responses from multiple energy-harvesting nodes imposes challenges at the system level in addition to the constraints at each node. This paper presents a novel scheduling policy along with an adaptive ensemble learner to efficiently perform HAR on a distributed energy-harvesting body area network. Our proposed policy, Origin, strategically ensures efficient and accurate individual inference execution at each sensor node by using a novel activity-aware scheduling approach. It also leverages the continuous nature of human activity when coordinating and aggregating results from all the sensor nodes to improve final classification accuracy. Further, Origin proposes an adaptive ensemble learner to personalize the optimizations based on each individual user. Experimental results using two different HAR data-sets show Origin, while running on harvested energy, to be at least 2.5% more accurate than a classical battery-powered energy aware HAR classifier continuously operating at the same average power. 
    more » « less
  3. Many network/graph structures are continuously monitored by various sensors that are placed at a subset of nodes and edges. The multidimensional data collected from these sensors over time create large-scale graph data in which the data points are highly dependent. Monitoring large-scale attributed networks with thousands of nodes and heterogeneous sensor data to detect anomalies and unusual events is a complex and computationally expensive process. This paper introduces a new generic approach inspired by state-space models for network anomaly detection that can utilize the information from the network topology, the node attributes (sensor data), and the anomaly propagation sets in an integrated manner to analyze the entire network all at once. This article presents how heterogeneous network sensor data can be analyzed to locate the sources of anomalies as well as the anomalous regions in a network, which can be impacted by one or multiple anomalies at any time instance. Experimental results demonstrate the superior performance of our proposed framework in detecting anomalies in attributed graphs. Summary of Contribution: With the increasing availability of large-scale network sensors and rapid advances in artificial intelligence methods, fundamentally new analytical tools are needed that can integrate data collected from sensors across the networks for decision making while taking into account the stochastic and topological dependencies between nodes, sensors, and anomalies. This paper develops a framework to intelligently and efficiently analyze complex and highly dependent data collected from disparate sensors across large-scale network/graph structures to detect anomalies and abnormal behavior in real time. Unlike general purpose (often black-box) machine learning models, this paper proposes a unique framework for network/graph structures that incorporates the complexities of networks and interdependencies between network entities and sensors. Because of the multidisciplinary nature of the paper that involves optimization, machine learning, and system monitoring and control, it can help researchers in both operations research and computer science domains to develop new network-specific computing tools and machine learning frameworks to efficiently manage large-scale network data. 
    more » « less
  4. Abstract

    Understanding how ecology and phylogeny shape parasite communities can inform parasite control and wildlife conservation initiatives while contributing to the study of host species evolution.

    We tested the relative strengths of phylogeny and ecology in driving parasite community structure in a host whose ecology diverges significantly from that of its closest phylogenetic relatives.

    We characterized the gastrointestinal (GI) parasite community of wild geladasTheropithecus gelada, primates that are closely related to baboons but specialized to graminovory in the Ethiopian Highlands.

    Geladas exhibited very constrained GI parasite communities: only two genera (OesophagostomumandTrichostrongylus) were identified across 305 samples. This is far below the diversity reported for baboons (Papiospp.) and at the low end of the range of domestic grazers (e.g.Bos taurus,Ovis aries) inhabiting the same region and ecological niche.

    Using deep amplicon sequencing, we identified 15 amplicon sequence variants (ASVs) within the two genera, seven of which matched toOesophagostomumsp., seven toTrichostrongylussp., and one toT. vitrinus.

    Population was an important predictor of ASV richness. Geladas in the most ecologically disturbed area of the national park exhibited approximately four times higher ASV richness than geladas at a less disturbed location within the park.

    In this system, ecology was a stronger predictor of parasite community structure than was phylogeny, with geladas sharing more elements of their parasite communities with other grazers in the same area than with closely related sister taxa.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  5. With recent technological advances in sensor nodes, IoT enabled applications have great potential in many domains. However, sensing data may be inaccurate due to not only faults or failures in the sensor and network but also the limited resources and transmission capability available in sensor nodes. In this paper, we first model streams of IoT data as a handful of sampled data in the transformed domain while assuming the information attained by those sampled data reveal different sparsity profiles between normal and abnormal. We then present a novel approach called AD2 (Anomaly Detection using Approximated Data) that applies a transformation on the original data, samples top k-dominant components, and detects data anomalies based on the disparity in k values. To demonstrate the effectiveness of AD2 , we use IoT datasets (temperature, humidity, and CO) collected from real-world wireless sensor nodes. Our experimental evaluation demonstrates that AD2 can approximate and successfully detect 64%-94% of anomalies using only 1.9% of the original data and minimize false positive rates, which would otherwise require the entire dataset to achieve the same level of accuracy. 
    more » « less