Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Biopotential electrodes play an integral role within smart wearables and clothing in capturing vital signals like electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG). This study focuses on dry e-textile electrodes (E1–E6) and a laser-cut knit electrode (E7), to assess their impedance characteristics under varying contact forces and moisture conditions. Synthetic perspiration was applied using a moisture management tester and impedance was measured before and after exposure, followed by a 24 h controlled drying period. Concurrently, the signal-to-noise ratio (SNR) of the dry electrode was evaluated during ECG data collection on a healthy participant. Our findings revealed that, prior to moisture exposure, the impedance of electrodes E7, E5, and E2 was below 200 ohm, dropping to below 120 ohm post-exposure. Embroidered electrodes E6 and E4 exhibited an over 25% decrease in mean impedance after moisture exposure, indicating the impact of stitch design and moisture on impedance. Following the controlled drying, certain electrodes (E1, E2, E3, and E4) experienced an over 30% increase in mean impedance. Overall, knit electrode E7, and embroidered electrodes E2 and E6, demonstrated superior performance in terms of impedance, moisture retention, and ECG signal quality, revealing promising avenues for future biopotential electrode designs.more » « less
-
Parkinson’s disease (PD) is a neurological progressive movement disorder, affecting more than 10 million people globally. PD demands a longitudinal assessment of symptoms to monitor the disease progression and manage the treatments. Existing assessment methods require patients with PD (PwPD) to visit a clinic every 3–6 months to perform movement assessments conducted by trained clinicians. However, periodic visits pose barriers as PwPDs have limited mobility, and healthcare cost increases. Hence, there is a strong demand for using telemedicine technologies for assessing PwPDs in remote settings. In this work, we present an in-home telemedicine kit, named iTex (intelligent Textile), which is a patient-centered design to carry out accessible tele-assessments of movement symptoms in people with PD. iTex is composed of a pair of smart textile gloves connected to a customized embedded tablet. iTex gloves are integrated with flex sensors on the fingers and inertial measurement unit (IMU) and have an onboard microcontroller unit with IoT (Internet of Things) capabilities including data storage and wireless communication. The gloves acquire the sensor data wirelessly to monitor various hand movements such as finger tapping, hand opening and closing, and other movement tasks. The gloves are connected to a customized tablet computer acting as an IoT device, configured to host a wireless access point, and host an MQTT broker and a time-series database server. The tablet also employs a patient-centered interface to guide PwPDs through the movement exam protocol. The system was deployed in four PwPDs who used iTex at home independently for a week. They performed the test independently before and after medication intake. Later, we performed data analysis of the in-home study and created a feature set. The study findings reported that the iTex gloves were capable to collect movement-related data and distinguish between pre-medication and post-medication cases in a majority of the participants. The IoT infrastructure demonstrated robust performance in home settings and offered minimum barriers for the assessment exams and the data communication with a remote server. In the post-study survey, all four participants expressed that the system was easy to use and poses a minimum barrier to performing the test independently. The present findings indicate that the iTex glove system has the potential for periodic and objective assessment of PD motor symptoms in remote settings.more » « less
-
The advancement of smart textiles has led to significant interest in developing wearable textile sensors (WTS) and offering new modalities to sense vital signs and activity monitoring in daily life settings. For this, textile fabrication methods such as knitting, weaving, embroidery, and braiding offer promising pathways toward unobtrusive and seamless sensing for WTS applications. Specifically, the knitted sensor has a unique intermeshing loop structure which is currently used to monitor repetitive body movements such as breathing (microscale motion) and walking (macroscale motion). However, the practical sensing application of knit structure demands a comprehensive study of knit structures as a sensor. In this work, we present a detailed performance evaluation of six knitted sensors and sensing variation caused by design, sensor size, stretching percentages % (10, 15, 20, 25), cyclic stretching (1000), and external factors such as sweat (salt-fog test). We also present regulated respiration (inhale–exhale) testing data from 15 healthy human participants; the testing protocol includes three respiration rates; slow (10 breaths/min), normal (15 breaths/min), and fast (30 breaths/min). The test carried out with statistical analysis includes the breathing time and breathing rate variability. These testing results offer an empirically derived guideline for future WTS research, present aggregated information to understand the sensor behavior when it experiences a different range of motion, and highlight the constraints of the silver-based conductive yarn when exposed to the real environment.more » « less
-
Sensor networks and IoT systems have been widely deployed in monitoring and controlling system. With its increasing utilization, the functionality and performance of sensor networks and their applications are not the only design aims; security issues in sensor networks attract more and more attentions. Security threats in sensor and its networks could be originated from various sectors: users in cyber space, security-weak protocols, obsolete network infrastructure, low-end physical devices, and global supply chain. In this work, we take one of the emerging applications, advanced manufacturing, as an example to analyze the security challenges in the sensor network. Presentable attacks—hardware Trojan attack, man-in-the-middle attack, jamming attack and replay attack—are examined in the context of sensing nodes deployed in a long-range wide-area network (LoRaWAN) for advanced manufacturing. Moreover, we analyze the challenges of detecting those attacks.more » « less