skip to main content

Search for: All records

Creators/Authors contains: "Mankoff, Jennifer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The popularity of 3D printed assistive technology has led to the emergence of new ecosystems of care, where multiple stakeholders (makers, clinicians, and recipients with disabilities) work toward creating new upper limb prosthetic devices. However, despite the increasing growth, we currently know little about the differences between these care ecosystems. Medical regulations and the prevailing culture have greatly impacted how ecosystems are structured and stakeholders work together, including whether clinicians and makers collaborate. To better understand these care ecosystems, we interviewed a range of stakeholders from multiple countries, including Brazil, Chile, Costa Rica, France, India, Mexico, and the U.S. Ourmore »broad analysis allowed us to uncover different working examples of how multiple stakeholders collaborate within these care ecosystems and the main challenges they face. Through our study, we were able to uncover that the ecosystems with multi-stakeholder collaborations exist (something prior work had not seen), and these ecosystems showed increased success and impact. We also identified some of the key follow-up practices to reduce device abandonment. Of particular importance are to have ecosystems put in place follow up practices that integrate formal agreements and compensations for participation (which do not need to be just monetary). We identified that these features helped to ensure multi-stakeholder involvement and ecosystem sustainability. We finished the paper with socio-technical recommendations to create vibrant care ecosystems that include multiple stakeholders in the production of 3D printed assistive devices.« less
    Free, publicly-accessible full text available January 1, 2023
  2. Background Online physician reviews are an important source of information for prospective patients. In addition, they represent an untapped resource for studying the effects of gender on the doctor-patient relationship. Understanding gender differences in online reviews is important because it may impact the value of those reviews to patients. Documenting gender differences in patient experience may also help to improve the doctor-patient relationship. This is the first large-scale study of physician reviews to extensively investigate gender bias in online reviews or offer recommendations for improvements to online review systems to correct for gender bias and aid patients in selecting amore »physician. Objective This study examines 154,305 reviews from across the United States for all medical specialties. Our analysis includes a qualitative and quantitative examination of review content and physician rating with regard to doctor and reviewer gender. Methods A total of 154,305 reviews were sampled from Google Place reviews. Reviewer and doctor gender were inferred from names. Reviews were coded for overall patient experience (negative or positive) by collapsing a 5-star scale and coded for general categories (process, positive/negative soft skills), which were further subdivided into themes. Computational text processing methods were employed to apply this codebook to the entire data set, rendering it tractable to quantitative methods. Specifically, we estimated binary regression models to examine relationships between physician rating, patient experience themes, physician gender, and reviewer gender). Results Female reviewers wrote 60% more reviews than men. Male reviewers were more likely to give negative reviews (odds ratio [OR] 1.15, 95% CI 1.10-1.19; P<.001). Reviews of female physicians were considerably more negative than those of male physicians (OR 1.99, 95% CI 1.94-2.14; P<.001). Soft skills were more likely to be mentioned in the reviews written by female reviewers and about female physicians. Negative reviews of female doctors were more likely to mention candor (OR 1.61, 95% CI 1.42-1.82; P<.001) and amicability (OR 1.63, 95% CI 1.47-1.90; P<.001). Disrespect was associated with both female physicians (OR 1.42, 95% CI 1.35-1.51; P<.001) and female reviewers (OR 1.27, 95% CI 1.19-1.35; P<.001). Female patients were less likely to report disrespect from female doctors than expected from the base ORs (OR 1.19, 95% CI 1.04-1.32; P=.008), but this effect overrode only the effect for female reviewers. Conclusions This work reinforces findings in the extensive literature on gender differences and gender bias in patient-physician interaction. Its novel contribution lies in highlighting gender differences in online reviews. These reviews inform patients’ choice of doctor and thus affect both patients and physicians. The evidence of gender bias documented here suggests review sites may be improved by providing information about gender differences, controlling for gender when presenting composite ratings for physicians, and helping users write less biased reviews.« less
  3. Knitting creates complex, soft fabrics with unique texture properties that can be used to create interactive objects.However, little work addresses the challenges of designing and using knitted textures computationally. We present KnitPick: a pipeline for interpreting hand-knitting texture patterns into KnitGraphs which can be output to machine and hand-knitting instructions. Using KnitPick, we contribute a measured and photographed data set of 472 knitted textures. Based on findings from this data set, we contribute two algorithms for manipulating KnitGraphs. KnitCarving shapes a graph while respecting a texture, and KnitPatching combines graphs with disparate textures while maintaining a consistent shape. KnitPick ismore »the first system to bridge the gap between hand- and machine-knitting when creating complex knitted textures.« less
  4. Abstract: Consumer-fabrication technologies potentially improve the effectiveness and adoption of assistive technology (AT) by engaging AT users in AT creation. However, little is known about the role of clinicians in this revolution. We investigate clinical AT fabrication by working as expert fabricators for clinicians over a four-month period. We observed and co-designed AT with four occupational therapists at two clinics: a free clinic for uninsured clients, and a Veteran's Affairs Hospital. We find that existing fabrication processes, particularly with respect to rapid prototyping, do not align with clinical practice and itsdo-no-harm ethos. We recommend software solutions that would integrate intomore »client care by: amplifying clinicians' expertise, revealing appropriate fabrication opportunities, and supporting adaptable fabrication.« less