skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Manley, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The use of recreational ecosystem services is highly dependent on the surrounding environmental and climate conditions. Due to this dependency, future recreational opportunities provided by nature are at risk from climate change. To understand how climate change will impact recreation we need to understand current recreational patterns, but traditional data is limited and low resolution. Fortunately, social media data presents an opportunity to overcome those data limitations and machine learning offers a tool to effectively use that big data. We use data from the social media site Flickr as a proxy for recreational visitation and random forest to model the relationships between social, environmental, and climate factors and recreation for the peak season (summer) in California. We then use the model to project how non-urban recreation will change as the climate changes. Our model shows that current patterns are exacerbated in the future under climate change, with currently popular summer recreation areas becoming more suitable and unpopular summer recreation areas becoming less suitable for recreation. Our model results have land management implications as recreation regions that see high visitation consequently experience impacts to surrounding ecosystems, ecosystem services, and infrastructure. This information can be used to include climate change impacts into land management plans to more effectively provide sustainable nature recreation opportunities for current and future generations. Furthermore, our study demonstrates that crowdsourced data and machine learning offer opportunities to better integrate socio-ecological systems into climate impacts research and more holistically understand climate change impacts to human well-being. 
    more » « less